Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Lạng Sơn

Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Lạng Sơn Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2022-2023 sở GD ĐT Lạng Sơn Đề tuyển sinh THPT môn Toán năm 2022-2023 sở GD ĐT Lạng Sơn Sytu xin gửi đến quý thầy cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Lạng Sơn. Trích dẫn một số câu hỏi từ đề thi tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Lạng Sơn: Cho phương trình bậc hai với tham số m: x2 – 2(m + 1)x + 2m – 3 = 0. Giải phương trình khi m = 0. Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi giá trị m. Tìm tất cả các giá trị của m thỏa mãn điều kiện x1 + x2 – 2x1x2 = 1. Giải các phương trình và hệ phương trình sau. Cho đường tròn (O) đường kính AB. Dây cung MN vuông góc với AB, (AM < BM). Hai đường thẳng BM và NA cắt nhau tại K. Gọi H là chân đường vuông góc kẻ từ K đến đường thẳng AB. a. Chứng minh rằng tứ giác AHKM nội tiếp trong một đường tròn. b. Chứng minh rằng NB.HK = AN.HB. c. Chứng minh HM là tiếp tuyến của đường tròn (O). Hy vọng rằng các em học sinh sẽ tự tin và thành công trong kỳ thi sắp tới. Chúc quý thầy cô giáo và các em đạt kết quả cao trong bài thi!

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT An Giang
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT An Giang Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT An Giang Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT An Giang Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT An Giang bao gồm 6 bài toán tự luận, từng bài toán đều có lời giải chi tiết để học sinh tham khảo và tự kiểm tra kiến thức. Trích một số bài toán trong đề: 1. Cho hàm số y = ax + b (a ≠ 0) có đồ thị là đường thẳng d trên mặt phẳng tọa độ Oxy. Viết theo a và b phương trình đường thẳng (d′). Biết rằng (d) và (d′) vuông góc với nhau đồng thời cắt nhau tại một điểm thuộc trục hoành. 2. Cho tam giác ABC nội tiếp đường tròn O. Biết A = 60 độ; B và C là hai góc nhọn có số đo khác nhau. Vẽ các đường cao BE, CF của tam giác ABC (E, F lần lượt thuộc AC, AB). a. Chứng minh rằng góc BCF và góc BEF bằng nhau. b. Gọi I là trung điểm của BC. Chứng minh tam giác IEF là tam giác đều. c. Gọi K là trung điểm của EF. Chứng minh rằng IK song song OA. 3. Trong một hình vành khăn với các bán kính đường tròn là 10R và 8R. Xếp các hình tròn bán kính R tiếp xúc với cả hai đường tròn của hình vành khăn sao cho các hình tròn này không chồng lấn nhau. Hỏi xếp được nhiều nhất bao nhiêu hình tròn như thế?
Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT Lạc Thủy Hòa Bình (Ban A)
Nội dung Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT Lạc Thủy Hòa Bình (Ban A) Bản PDF - Nội dung bài viết Đề thi tuyển sinh năm học 2017-2018 môn Toán trường THPT Lạc Thủy Hòa Bình (Ban A) Đề thi tuyển sinh năm học 2017-2018 môn Toán trường THPT Lạc Thủy Hòa Bình (Ban A) Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT Lạc Thủy - Hòa Bình (Ban A) bao gồm 25 bài toán theo hình thức điền kết quả. Đây là một bài thi quan trọng để đánh giá kiến thức và kỹ năng của học sinh trong môn Toán. Các bài toán trong đề thi có thể đa dạng về đề tài và độ khó, từ đơn giản đến phức tạp, đề cao khả năng tư duy logic và giải quyết vấn đề của thí sinh. Qua đề thi này, học sinh có cơ hội thể hiện kiến thức và năng lực của mình, đồng thời chuẩn bị tốt cho việc học tập và phát triển sau này.
Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên Quốc học TT Huế (chuyên Toán)
Nội dung Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên Quốc học TT Huế (chuyên Toán) Bản PDF - Nội dung bài viết Đề thi tuyển sinh năm học 2017-2018 môn Toán trường THPT chuyên Quốc học TT Huế (chuyên Toán) Đề thi tuyển sinh năm học 2017-2018 môn Toán trường THPT chuyên Quốc học TT Huế (chuyên Toán) Đề thi tuyển sinh lớp 10 năm học 2017-2018 môn Toán trường THPT chuyên Quốc học TT Huế (chuyên Toán) bao gồm 5 bài toán tự luận với lời giải chi tiết. Dưới đây là một số bài toán trong đề: 1. Trong mặt phẳng tọa độ Oxy, có parabol 2 (P): y = x^2 và đường thẳng (d) có hệ số góc k và đi qua điểm M(0;1). Chứng minh rằng với mọi giá trị của k, đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A và B có hoành độ x1, x2 thỏa điều kiện |x1 - x2| >= 2. 2. Cho đường tròn (O) có tâm O và hai điểm C, D trên (O) sao cho ba điểm C, O, D không thẳng hàng. Gọi Ct là tia đối của tia CD, M là điểm tùy ý trên Ct, M khác C. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (O) (A và B là các tiếp điểm, B thuộc cung nhỏ CD). Gọi I là trung điểm của CD, H là giao điểm của đường thẳng MO và đường thẳng AB. a) Chứng minh tứ giác MAIB nội tiếp. b) Chứng minh đường thẳng AB luôn đi qua một điểm cố định khi M di động trên tia Ct. c) Chứng minh MD/MC = HA^2/HC^2. Đề thi tuyển sinh mang đến những bài toán thú vị, hấp dẫn và đòi hỏi sự tỉ mỉ, logic trong suy luận. Chúc các em thí sinh thành công trong kỳ thi sắp tới!
Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên Quốc học TT Huế (chuyên Tin)
Nội dung Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên Quốc học TT Huế (chuyên Tin) Bản PDF - Nội dung bài viết Đề thi tuyển sinh năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học - TT Huế (chuyên Tin) Đề thi tuyển sinh năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học - TT Huế (chuyên Tin) Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học - TT Huế (chuyên Tin) là bài thi đầy thách thức với nhiều bài toán khó, yêu cầu sự tư duy logic và khả năng suy luận cao. Trong đề thi này, có 5 bài toán tự luận, mỗi bài đều có lời giải chi tiết để giúp học sinh hiểu rõ từng bước giải quyết vấn đề. Một trong những bài toán trong đề thi là bài toán về parabol và đường thẳng, đặt ra các điều kiện và yêu cầu tìm ra các giá trị của các hằng số sao cho tam giác tạo bởi các điểm cắt đường thẳng và parabol có diện tích đã cho. Bài toán này đòi hỏi sự tinh tế trong việc xử lý các định lý và phương pháp tính toán. Bài toán khác đưa ra một định lý về tổ hợp các số nguyên không âm để tổng các tích và tổng các số đó đạt giá trị nhất định. Học sinh cần phải sử dụng đến kiến thức về tổ hợp và tìm ra cách giải phù hợp để hoàn thành bài toán. Ngoài ra, đề thi còn có bài toán về hình vuông và việc chứng minh tồn tại tam giác có diện tích không vượt quá một giá trị nhất định. Để giải quyết bài toán này, học sinh cần phải áp dụng kiến thức về hình học và tư duy logic để đưa ra lời giải chính xác. Đề thi tuyển sinh môn Toán của trường THPT chuyên Quốc học - TT Huế (chuyên Tin) không chỉ đánh giá kiến thức mà còn thách thức sự sáng tạo và tư duy của học sinh. Bằng cách học tập và ôn luyện kỹ càng, học sinh sẽ có cơ hội vượt qua thử thách này và chinh phục bài thi một cách xuất sắc.