Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Ứng dụng tích phân trong bài toán diện tích hình phẳng với dữ kiện toán thực tế

Tài liệu gồm 24 trang, được biên soạn bởi nhóm tác giả Toán Học Bắc Trung Nam, hướng dẫn giải các bài toán ứng dụng tích phân trong bài toán diện tích hình phẳng với dữ kiện toán thực tế, đây là dạng toán vận dụng cao (VDC) thường gặp trong chương trình Giải tích 12 chương 3: Nguyên hàm, tích phân và ứng dụng; các bài toán trắc nghiệm trong tài liệu đều có đáp án và lời giải chi tiết. A. KIẾN THỨC CƠ BẢN B. BÀI TẬP 1. NHỮNG BÀI TOÁN THỰC TẾ SỬ DỤNG ĐỒ THỊ HÀM PARABOL. Bước 1. Chọn hệ trục tọa độ, xác định parabol. Bước 2. Tính diện tích hình phẳng giới hạn đồ thị hàm số y f x và các đường được cho trong bài toán. Bước 3. Tùy theo thực tế mỗi bài, tính diện tích theo yêu cầu. Chú ý: Mấu chốt của vấn đề tính diện tích parabol nằm ở khâu chọn hệ trục tọa độ phù hợp. Nên chọn hệ trục sao cho đỉnh parabol luôn nằm trùng với gốc O hoặc nằm trên trục Oy. Khi đó hàm số parabol luôn có dạng 2 y ax b. DẠNG 1: CÁC BÀI TOÁN TÍNH DIỆN TÍCH PARABOL ĐƠN THUẦN. DẠNG 2: CÁC BÀI TOÁN TÍNH DIỆN TÍCH XÁC ĐỊNH BỞI HAI HÀM SỐ. 2. NHỮNG BÀI TOÁN THỰC TẾ SỬ DỤNG ĐỒ THỊ HÀM ELIP. Bước 1. Chọn hệ trục tọa độ, xác định Elip. Bước 2. Tính diện tích hình phẳng giới hạn đồ thị hàm số f x và các đường được cho trong bài toán. Bước 3. Tùy theo thực tế mỗi bài, tính diện tích theo yêu cầu. Chú ý Mấu chốt của vấn đề tính diện tích Elip nằm ở khâu chọn hệ trục tọa độ phù hợp. Nên chọn hệ trục sao cho tâm Elip luôn nằm trùng với gốc O. Khi đó hàm số elip luôn có dạng 2 2 2 2 1. 3. NHỮNG BÀI TOÁN THỰC TẾ SỬ DỤNG ĐƯỜNG TRÒN. Bước 1. Xác định Phương trình của đường tròn 2 2 2 x a y b R. Diện tích toàn phần của đường tròn: 2 S R. Bước 2. Trọn hệ trục tọa độ để đặt đường tròn và phác họa phần mặt phẳng cần tính diện tích được giới hạn bởi đồ thị hàm số y f x và đường tròn. Bước 3. Ta sử dụng công thức tính diện tích d v u f x g x x để tính diện tích phần cần tính. Bước 4. Tùy thuộc vào câu hỏi để kết luận và đưa ra kết quả bài toán.

Nguồn: toanmath.com

Đọc Sách

Tổng hợp 980 câu trắc nghiệm nguyên hàm, tích phân và ứng dụng - Nguyễn Bảo Vương
Tài liệu tuyển chọn 980 bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng có đáp án với độ khó từ cơ bản đến vận dung cao được sưu tầm, tổng hợp và biên soạn bởi thầy Nguyễn Bảo Vương. Tài liệu được chia thành 6 phần, phân dạng rõ các bài cơ bản và nâng cao. Ngoài phần bài tập còn có lý thuyết, phân dạng và các ví dụ mẫu có lời giải chi tiết. Các dạng toán nguyên hàm – tích phân và ứng dụng được đề cập trong tài liệu gồm: [ads] + Dạng 1. Tìm nguyên hàm bằng phương pháp phân tích + Dạng 2. Tìm nguyên hàm bằng phương pháp đổi biến số + Dạng 3. Tìm nguyên hàm bằng phương pháp từng phần + Dạng 4. Tính tích phân bằng phương pháp phân tích + Dạng 5. Tính tích phân bằng phương pháp đổi biến số + Dạng 6. Tính tích phân bằng phương pháp từng phần + Dạng 7. Diện tích hình phẳng giới hạn + Dạng 8. Thể tích hình phẳng giới hạn
55 câu trắc nghiệm nguyên hàm, tích phân và ứng dụng - Đoàn Trí Dũng
Tài liệu gồm 8 trang với 55 bài tập trắc nghiệm nguyên hàm – tích phân và ứng dụng có đáp án, tài liệu do thầy Đoàn Trí Dũng biên soạn. Trích dẫn tài liệu : + Hình phẳng được tô màu ở trong hình vẽ bên được giới hạn bởi một đồ thị hàm số bậc ba với một đường thẳng (d) cùng với trục hoành và trục tung. Cho hình phẳng đó quay quanh trục hoành. Thể tích của khối tròn xoay thu được có giá trị gần với giá trị nào nhất sau đây? A. 51.22   B. 48.02 C. 46.44   D. 42.18 [ads] + Một ô tô đang chạy với vận tốc 10m/s thì người lái đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc v(t) = -5t + 10 m/s, trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi đến khi dừng hẳn, ô tô đã đi được quãng đường là bao nhiêu mét? A. 0,2m   B. 2m C. 10m   D. 20m + Người ta thiết kế đầu đạn của một quả bom là một khối tròn xoay đặc, được khoét vào trong. Biết rằng thiết diện qua trục đối xứng của đầu đạn là hai Parabol với các kích thước như hình vẽ dưới đây. Tính thể tích của đầu đạn đó?
600 câu hỏi trắc nghiệm chuyên đề tích phân và ứng dụng - Nhóm Toán
Tài liệu tuyển chọn 600 câu hỏi trắc nghiệm chuyên đề tích phân và ứng dụng có đáp án được biên soạn bởi các thầy cô trên groups Nhóm Toán gồm 96 trang được chia thành 8 đề. Trích dẫn tài liệu : + Diện tích hình phẳng giới hạn bởi hai đường thẳng x = 0, x = π và đồ thị của hai hàm số y = cosx, y = sinx là: A. 2 + √2   B. 2 C. √2   D. 2√2 + Khẳng định nào sau đây đúng? A. Nếu w'(t) là tốc độ tăng trưởng cân nặng/năm của một đứa trẻ, thì tích phân từ 5 đến 10 của hàm số w'(t)dt là sự cân nặng của đứa trẻ giữa 5 và 10 tuổi. B. Nếu dầu rò rỉ từ 1 cái thùng với tốc độ r(t) tính bằng galông/phút tại thời gian t, thì tích phân từ 0 đến 120 của hàm số r(t)dt biểu thị lượng galông dầu rò rỉ trong 2 giờ đầu tiên. [ads] C. Nếu r(t) là tốc độ tiêu thụ dầu của thế giới, trong đó t được bằng năm, bắt đầu tại t = 0 vào ngày 1 tháng 1 năm 2000 và r(t) được tính bằng thùng/năm, tích phân từ 0 đến 17 của hàm số r(t)dt biểu thị số lượng thùng dầu tiêu thụ từ ngày 1 tháng 1 năm 2000 đến ngày 1 tháng 1 năm 2017. D. Cả A, B, C đều đúng. + Cho hàm số f(x) = sin2x.cosx và các mệnh đề sau: i) Họ nguyên hàm của hàm số là -2/3.(cosx)^3 + C ii) Họ nguyên hàm của hàm số là -1/6.cos3x – 1/2cosx + C ii) Họ nguyên hàm của hàm số là -2/3.(cosx)^3 + C A. Chỉ có duy nhất một mệnh đề đúng B. Có hai mệnh đề đúng C. Không có mệnh đề nào đúng D. Cả ba mệnh đều đều đúng
10 dạng tích phân thường gặp trong đề thi Quốc gia - Nguyễn Thanh Tùng
Trong các các kì thi Đại Học – Cao Đẳng câu tích phân luôn mặc định xuất hiện trong đề thi môn Toán. Tích phân không phải là câu hỏi khó, đây là một bài toán nhẹ nhàng, mang tính chất “cho điểm”. Vì vậy việc mất điểm sẽ trở nên “vô duyên” với những ai đã bỏ chút thời gian đọc tài liệu. Ở bài viết nhỏ này sẽ cung cấp tới các em các dạng tích phân thường gặp xuất hiện trong các kì thi Đại Học – Cao Đẳng (và đề thi cũng sẽ không nằm ngoài các dạng này). Với cách giải tổng quát cho các dạng, các ví dụ minh họa đi kèm, cùng với lượng bài tập đa dạng, phong phú. Mong rằng sau khi đọc tài liệu, việc đứng trước một bài toán tích phân sẽ không còn là rào cản đối với các em. Chúc các em thành công! Trong bài viết này sẽ giới thiệu tới các em 8 phần: [ads] I. SƠ ĐỒ CHUNG GIẢI BÀI TOÁN TÍCH PHÂN II. CÁC CÔNG THỨC NGUYÊN HÀM CẦN NHỚ III. LỚP TÍCH PHÂN HỮU TỈ VÀ TÍCH PHÂN LƯỢNG GIÁC CƠ BẢN IV. 10 DẠNG TÍCH PHÂN TRONG CÁC ĐỀ THI ĐẠI HỌC – CAO ĐẲNG V. ỨNG DỤNG TÍCH PHÂN VI. CÁC LỚP TÍCH PHÂN ĐẶC BIỆT VÀ TÍCH PHÂN TRUY HỒI VII. DÙNG TÍCH PHÂN ĐỂ CHỨNG MINH ĐẲNG THỨC CHỨA nCk VIII. KINH NGHIỆM GIẢI BÀI TOÁN TÍCH PHÂN ĐẠI HỌC