Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tổng hợp kiến thức cơ bản Toán 9

Nhằm giúp các em tra cứu nhanh các kiến thức cơ bản môn Toán lớp 9, THCS. giới thiệu đến các em tài liệu tổng hợp kiến thức cơ bản toán 9, tài liệu gồm 17 trang bao gồm lý thuyết, các dạng toán, cách giải các dạng Toán 9 … giúp các em học tốt chương trình Toán 9 và hữu ích trong quá trình ôn tập chuẩn bj cho kỳ thi tuyển sinh vào lớp 10 môn Toán. Khái quát nội dung tài liệu tổng hợp kiến thức cơ bản toán 9: PHẦN 1 . ĐẠI SỐ A. Kiến thức cần nhớ . 1. Điều kiện để căn thức có nghĩa. 2. Các công thức biến đổi căn thức. 3. Hàm số y = ax + b (a khác 0). 4. Hàm số y = ax^2 (a khác 0). 5. Vị trí tương đối của hai đường thẳng. 6. Xét vị trí tương đối của đường thẳng và đường cong. 7. Phương trình bậc hai. 8. Hệ thức Vi-et và ứng dụng. 9. Giải bài toán bằng cách lập phương trình, hệ phương trình. B. Các dạng bài tập . Dạng 1: Rút gọn biểu thức. Dạng 2: Bài toán tính toán. Dạng 3: Chứng minh đẳng thức. Dạng 4: Chứng minh bất đẳng thức. Dạng 5: Bài toán liên quan đến phương trình bậc hai. Dạng 6: Giải phương trình, bất phương trình. Dạng 7: Giải phương trình vô tỉ. Dạng 8: Giải phương trình chứa dấu giá trị tuyệt đối. Dạng 9: Giá trị lớn nhất, giá trị nhỏ nhất của biểu thức. Dạng 10: Các bài toán liên quan đến hàm số. [ads] PHẦN II – HÌNH HỌC A. Kiến thức cần nhớ . 1. Hệ thức lượng trong tam giác vuông. 2. Tỉ số lượng giác của góc nhọn. 3. Hệ thức về cạnh và góc trong tam giác vuông. 4. Đường tròn. 5. Tiếp tuyến của đường tròn. 6. Góc với đường tròn. 7. Độ dài đường tròn và độ dài cung tròn. 8. Diện tích hình tròn và diện tích hình quạt tròn. 9. Các loại đường tròn. 10. Các loại hình không gian. 11. Tứ giác nội tiếp. B. Các dạng bài tập . Dạng 1: Chứng minh hai góc bằng nhau. Dạng 2: Chứng minh hai đoạn thẳng bằng nhau. Dạng 3: Chứng minh hai đường thẳng song song. Dạng 4: Chứng minh hai đường thẳng vuông góc. Dạng 5: Chứng minh ba đường thẳng đồng quy. Dạng 6: Chứng minh hai tam giác bằng nhau. Dạng 7: Chứng minh hai tam giác đồng dạng. Dạng 8: Chứng minh đẳng thức hình học. Dạng 9: Chứng minh tứ giác nội tiếp. Dạng 10: Chứng minh đường thẳng d là tiếp tuyến của đường tròn tâm O, bán kính R. Dạng 11: Các bài toán tính toán độ dài cạnh, độ lớn góc.

Nguồn: toanmath.com

Đọc Sách

Tài liệu lớp 9 môn Toán chủ đề căn bậc hai
Nội dung Tài liệu lớp 9 môn Toán chủ đề căn bậc hai Bản PDF - Nội dung bài viết Tài liệu lớp 9 môn Toán chủ đề căn bậc haiPhần lý thuyếtPhần bài tập và các dạng toán Nội dung mới sau khi đã viết lại: Tài liệu lớp 9 môn Toán chủ đề căn bậc hai Tài liệu này bao gồm 25 trang với nội dung chi tiết về kiến thức cần nhớ, các dạng toán và bài tập liên quan đến căn bậc hai trong chương trình môn Toán lớp 9. Tài liệu cung cấp đầy đủ đáp án và lời giải chi tiết để học sinh có thể tự học và ôn tập hiệu quả. Phần lý thuyết Trong phần này, học sinh sẽ được tóm tắt về khái niệm căn bậc hai, khái niệm về căn bậc hai số học, và cách so sánh các căn bậc hai số học với nhau. Phần bài tập và các dạng toán Tài liệu cung cấp các dạng toán phổ biến liên quan đến căn bậc hai như: tìm căn bậc hai và căn bậc hai số học của một số, tìm số có căn bậc hai số học là một số cho trước, tính giá trị của biểu thức chứa căn bậc hai, so sánh các căn bậc hai số học, tìm giá trị của x thỏa mãn điều kiện cho trước, và chứng minh một số là số vô tỷ. Ngoài ra, tài liệu cũng bao gồm bài tập trắc nghiệm và bài tập về nhà để học sinh có cơ hội ôn tập và kiểm tra kiến thức của mình. File WORD cũng được cung cấp để giáo viên có thể sử dụng trong việc giảng dạy và kiểm tra. Với nội dung đầy đủ và chi tiết, tài liệu này sẽ giúp học sinh nắm vững kiến thức về căn bậc hai và rèn luyện kỹ năng giải các dạng toán liên quan một cách hiệu quả.
Tài liệu lớp 9 môn Toán chủ đề liên hệ giữa phép chia và phép khai phương
Nội dung Tài liệu lớp 9 môn Toán chủ đề liên hệ giữa phép chia và phép khai phương Bản PDF - Nội dung bài viết Tài liệu học Toán lớp 9 chủ đề liên hệ giữa phép chia và phép khai phươngTóm tắt lý thuyếtBài tập và dạng toánBài tập thực hành Tài liệu học Toán lớp 9 chủ đề liên hệ giữa phép chia và phép khai phương Tài liệu này bao gồm 14 trang, cung cấp kiến thức cần nhớ, các dạng toán và bài tập liên quan đến việc kết hợp giữa phép chia và phép khai phương trong chương trình môn Toán lớp 9. Mỗi bài tập đều có đáp án và lời giải chi tiết để học sinh dễ dàng hiểu và tự kiểm tra kiến thức của mình. Tóm tắt lý thuyết 1. Định lý quan trọng: Với mọi số A và B khác 0, ta có A^2 = B^2 khi và chỉ khi A = B hoặc A = -B. 2. Quy tắc khai phương và chia các căn bậc hai: Hướng dẫn cụ thể cách khai phương một thương và chia căn bậc hai của các số dương. Bài tập và dạng toán Để giúp học sinh ôn tập và nắm vững kiến thức, tài liệu cung cấp các dạng toán phổ biến như thực hiện phép tính, rút gọn biểu thức và giải phương trình. Mỗi dạng toán đều có cách giải chi tiết để học sinh hiểu rõ từng bước giải quyết. Cụ thể: Dạng 1: Thực hiện phép tính theo công thức khai phương một thương. Dạng 2: Rút gọn biểu thức bằng quy tắc khai phương một thương. Dạng 3: Giải phương trình chứa căn thức, lưu ý các điều kiện đi kèm. Bài tập thực hành Bên cạnh các dạng toán, tài liệu còn cung cấp bài tập trắc nghiệm và bài tập về nhà để học sinh tự luyện tập và kiểm tra kỹ năng của mình. Đồng thời, file Word cung cấp sẵn cho giáo viên để dễ dàng in ấn và sử dụng trong giảng dạy.
Tài liệu lớp 9 môn Toán chủ đề liên hệ giữa phép nhân và phép khai phương
Nội dung Tài liệu lớp 9 môn Toán chủ đề liên hệ giữa phép nhân và phép khai phương Bản PDF - Nội dung bài viết Tài liệu học Toán lớp 9 chủ đề liên hệ giữa phép nhân và phép khai phương Tài liệu học Toán lớp 9 chủ đề liên hệ giữa phép nhân và phép khai phương Tài liệu này bao gồm 19 trang với các kiến thức cần nhớ, các dạng toán và bài tập liên quan đến chủ đề giữa phép nhân và phép khai phương trong môn Toán lớp 9. Mỗi phần bài tập đều có đáp án và lời giải chi tiết để học sinh có thể tự kiểm tra và tự học. A. Tóm tắt lý thuyết: Định lý: Phép nhân của hai số a và b (a, b > 0) có thể được biểu diễn dưới dạng phép khai phương: ab = a √b. Quy tắc khai phương một tích: Khi nhân hai số a và b (a, b ≥ 0) ta có: √(ab) = √a * √b. Quy tắc nhân các căn bậc hai: Khi nhân hai biểu thức A và B (A, B ≥ 0) ta có: √A * √B = √(AB). B. Bài tập và các dạng toán: Dạng 1: Tính giá trị của biểu thức sử dụng công thức khai phương một tích. Dạng 2: Rút gọn biểu thức bằng cách áp dụng công thức khai phương của một tích. Dạng 3: Giải phương trình chứa căn thức, cần chú ý đến điều kiện đi kèm. Dạng 4: Chứng minh đẳng thức bằng cách áp dụng bất đẳng thức Côsi cho các số không âm. Bài tập trắc nghiệm và bài tập về nhà được cung cấp để học sinh tự luyện tập. File Word cũng được cung cấp để giáo viên dễ dàng sử dụng và chỉnh sửa khi cần thiết. Thông qua tài liệu này, học sinh sẽ nắm vững kiến thức và kỹ năng để áp dụng phép nhân và phép khai phương hiệu quả trong việc giải các bài toán và ứng dụng trong thực tế.
Tài liệu lớp 9 môn Toán chủ đề rút gọn biểu thức chứa căn thức bậc hai
Nội dung Tài liệu lớp 9 môn Toán chủ đề rút gọn biểu thức chứa căn thức bậc hai Bản PDF - Nội dung bài viết Tài liệu Tối ƒnghiệp về Rút Gọn Biểu Thông Chứa Căn Thức Bậc Hai Tài liệu Tối ƒnghiệp về Rút Gọn Biểu Thông Chứa Căn Thức Bậc Hai Tài liệu này được thiết kế đặc biệt cho học sinh lớp 9, cung cấp kiến thức cơ bản và bài tập thực hành về chủ đề rút gọn biểu thức chứa căn thức bậc hai trong môn Toán. Tài liệu gồm tổng cộng 22 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập hướng dẫn chi tiết. Kiến Thức Cần Nhớ: Quy trình rút gọn biểu thức chứa căn thức bậc hai bao gồm các bước sau: Tìm điều kiện xác định của biểu thức. Phân tích tử số và mẫu số thành nhân tử rồi rút gọn nếu có thể. Quy đồng. Phá ngoặc bằng cách nhân khai trển các hạng tử với nhau hoặc khi triển hằng đẳng thức. Thu gọn bằng cách cộng, trừ các hạng tử đồng dạng. Phân tích tử thành nhân tử. Rút gọn lần cuối. Các Dạng Toán: Trong tài liệu này, học sinh sẽ được hướng dẫn về các dạng toán sau: Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biểu thức khi biết giá trị của biến. Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biến khi biết giá trị của biểu thức. Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biến để biểu thức nhận giá trị nguyên. Rút gọn biểu thức chứa căn bậc hai và so sánh biểu thức với một số (hoặc một biểu thức khác). Rút gọn biểu thức chứa căn bậc hai và tìm giá trị nhỏ nhất hoặc lớn nhất của biểu thức. Bài Tập Tổng Hợp: Tài liệu cũng cung cấp một loạt bài tập trắc nghiệm và tự luyện để học sinh có thể ôn tập và áp dụng kiến thức đã học vào thực tế. Để thuận tiện cho việc sử dụng, tài liệu còn được cung cấp dưới dạng file Word cho quý thầy, cô giáo có thể sử dụng để in và phát cho học sinh. Với tài liệu này, học sinh sẽ có cơ hội nâng cao kiến thức và kỹ năng giải toán rút gọn biểu thức chứa căn thức bậc hai một cách hiệu quả.