Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán hệ trục tọa độ Oxyz và phương trình mặt cầu thường gặp

Chủ đề hệ trục tọa độ Oxyz và phương trình mặt cầu là chủ đề đầu tiên mà các em học sinh được học khi tìm hiểu chương trình Hình học 12 chương 3, đây là nội dung căn bản mà các em cần nắm vững trước khi tìm hiểu những kiến thức cao hơn. Trong đề thi THPT Quốc gia môn Toán, các câu hỏi và bài tập trắc nghiệm thuộc chủ đề hệ trục tọa độ Oxyz và phương trình mặt cầu được bắt gặp thường xuyên, các bài toán trải rộng ở nhiều mức độ nhận biết, thông hiểu, vận dụng và vận dụng bậc cao. Và để giúp các em có tài liệu tham khảo, rèn luyện, thầy Nguyễn Bảo Vương biên soạn và giới thiệu tài liệu các dạng toán hệ trục tọa độ Oxyz và phương trình mặt cầu thường gặp. Tài liệu gồm 46 trang với các câu hỏi và bài toán trắc nghiệm hệ trục tọa độ Oxyz và phương trình mặt cầu có đáp án và lời giải chi tiết, được trích dẫn từ các đề thi thử THPT Quốc gia môn Toán của các trường THPT và sở GD&ĐT trên toàn quốc. Mục lục tài liệu các dạng toán hệ trục tọa độ Oxyz và phương trình mặt cầu thường gặp: PHẦN A . CÂU HỎI Dạng toán 1. Tìm tọa độ điểm, véc tơ liên quan đến hệ trục tọa độ Oxyz (Trang 1). Dạng toán 2. Tích vô hướng, tích có hướng và ứng dụng (Trang 8). + Dạng toán 2.1 Tích vô hướng và ứng dụng (Trang 8). + Dạng toán 2.2 Tích có hướng và ứng dụng (Trang 9). Dạng toán 3. Mặt cầu (Trang 10). + Dạng toán 3.1 Xác định tâm, bán kính của mặt cầu (Trang 10). + Dạng toán 3.2 Viết phương trình mặt cầu (Trang 13). + Dạng toán 3.3 Một số bài toán khác (Trang 16). Dạng toán 4. Bài toán cực trị (Trang 17). [ads] PHẦN B . LỜI GIẢI THAM KHẢO Dạng toán 1. Tìm tọa độ điểm, véc tơ liên quan đến hệ trục tọa độ Oxy (Trang 19). Dạng toán 2. Tích vô hướng, tích có hướng và ứng dụng (Trang 27). + Dạng toán 2.1 Tích vô hướng và ứng dụng (Trang 27). + Dạng toán 2.2 Tích có hướng và ứng dụng (Trang 28). Dạng toán 3. Mặt cầu (Trang 31). + Dạng toán 3.1 Xác định tâm, bán kính của mặt cầu (Trang 31). + Dạng toán 3.2 Viết phương trình mặt cầu (Trang 34). + Dạng toán 3.3 Một số bài toán khác (Trang 37). Dạng toán 4. Bài toán cực trị (Trang 42 ).

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm phương pháp tọa độ trong không gian - Ngô Nguyên
Tài liệu gồm 100 trang phân dạng và tuyển chọn các bài tập trắc nghiệm chuyên đề phương pháp tọa độ trong không gian. Nội dung tài liệu gồm: + Chủ đề 1. Các phép toán về tọa độ véc tơ. Xác định điểm – một số tính chất hình học Dạng 1: Chứng minh A, B, C là ba đỉnh tam giác Dạng 2: Tìm D sao cho ABCD là hình bình hành Dạng 3: Chứng minh ABCD là một tứ diện + Chủ đề 2. Phương trình mặt cầu Dạng 1: Biết trước tâm I và bán kính R Dạng 2: Mặt cầu đường kính AB Dạng 3: Mặt cầu tâm I tiếp xúc mặt phẳng (α) Dạng 4: Mặt cầu ngoại tiếp tứ diện ABCD Dạng 5: Mặt cầu đi qua A, B, C và tâm I thuộc (α) Dạng 6: Mặt phẳng tiếp xúc mặt cầu tại A [ads] + Chủ đề 3. Phương trình mặt phẳng Dạng 1. Mặt phẳng (α) đi qua M và có vectơ pháp tuyến n Dạng 2. Mặt phẳng qua 3 điểm A, B, C Dạng 3. Mặt phẳng trung trực đoạn AB Dạng 4. Mặt phẳng (α) qua M và vuông góc đường thẳng d (hoặc AB) Dạng 5. Mp (α) qua M và song song (α): Ax + By + Cz + D = 0 Dạng 6. Mp(α) chứa (d) và song song (d’) Dạng 7. Mp(α) qua M, N và vuông góc (β) Dạng 8. Mp(α) chứa (d) và đi qua M Dạng 9. Mp(α) đi qua M và vuông góc với hai mặt phẳng (β), (γ) cho trước Dạng 10. Mặt Phẳng (α) chứa hai đường thẳng Δ1, Δ2 cắt nhau + Chủ đề 4. Phương trình đường thẳng Dạng 1. Viết phương trình đường thẳng (d) đi qua M và có vectơ chỉ phương u Dạng 2. Đường thẳng d qua A và song song (α) Dạng 3. Đường thẳng (d) qua A và vuông góc mp(α) Dạng 4. PT d’ hình chiếu của d lên (α) Dạng 5. Đường thẳng (d) qua A và vuông góc 2 đường thẳng d1 và d2 Dạng 6. Phương trình đường vuông góc chung của d1 và d2 Dạng 7. PT d qua A và d cắt d1, d2 Dạng 8. PT d // Δ và cắt d1, d2 Dạng 9. PT d qua A và vuông góc với d1, cắt d2 Dạng 10: PT d ⊥ (P) cắt d1, d2
111 câu hỏi trắc nghiệm về mặt phẳng trong Oxyz - Hứa Lâm Phong
Tài liệu gồm 12 trang với 111 câu hỏi trắc nghiệm về mặt phẳng trong Oxyz do thầy Hứa Lâm Phong biên soạn. Trích dẫn tài liệu : + Trong không gian Oxyz, cho mặt phẳng (P): 2x – 2y – z – 4 = 0 và mặt cầu (S): x^2 + y^2 + z^2 – 2x – 4y – 6z – 11 = 0. Mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có chu vi là? + Cho mặt phẳng (P): 3x + 4y + 12 = 0 và mặt cầu (S): x^2 + y^2 + (z – 2)^2 = 1. Khẳng định nào sau đây là đúng? A. (P) đi qua tâm của mặt cầu (S) B. (P) tiếp xúc với mặt cầu (S) [ads] C. (P) cắt mặt cầu (S) theo một đường tròn và mặt phẳng (P) không qua tâm của (S) D. (P) không có điểm chung với mặt cầu (S) + Khẳng định nào sau đây sai ? A. Nếu n là vectơ pháp tuyến của mặt phẳng thì kn với k khác 0 cũng là vectơ pháp tuyến của mặt phẳng đó. B. Mặt phẳng (P) có phương trình tổng quát là ax + by + cz + d = 0 với a, b, c không đồng thời bằng 0 thì nó có một vectơ pháp tuyến là n(a; b; c). C. Nếu a, b có giá song song hoặc nằm trong mặt phẳng thì tích có hướng của hai vectơ a, b gọi là vectơ pháp tuyến của mặt phẳng. D. Hai mặt phẳng vuông góc với nhau khi và chỉ khi hai vectơ pháp tuyến tương ứng của chúng vuông góc với nhau.
100 câu hỏi trắc nghiệm về tọa độ điểm trong Oxyz - Hứa Lâm Phong
Tài liệu gồm 9 trang với 100 câu hỏi trắc nghiệm về tọa độ điểm trong Oxyz do thầy Hứa Lâm Phong biên soạn. Trích dẫn tài liệu : 1. Trong không gian Oxyz, cho tam giác ABC với A(1;-4;2), B(-3;2;1), C(3;-1;4). Khi đó trọng tâm G của tam giác ABC là? 2. Trong không gian với hệ tọa độ Oxyz, điểm nào sau đây nằm trên trục Oz? 3. Cho ba điểm A(2;0;2), B(1;2;3), C(x;y-3;7). Biết rằng x; y là giá trị để ba điểm A,B,C thẳng hàng. Khi đó tổng x + y bằng? [ads]
420 câu trắc nghiệm phương pháp tọa độ trong không gian - Trần Duy Thúc
Tài liệu gồm 77 trang tuyển chọn 420 câu trắc nghiệm phương pháp tọa độ trong không gian có đáp án do thầy Trần Duy Thúc biên soạn. Tài liệu được chia thành 6 phần: + Phần 1: Các bài toán về tọa độ điểm và vector. + Phần 2: Các bài toán về viết phương trình mặt phẳng. + Phần 3: Các bài toán về viết phương trình mặt cầu. + Phần 4: Các bài toán về viết phương trình đường thẳng. + Phần 5: Các bài toán vị trí tương đối. + Phần 6: Các bài toán tổng hợp. [ads]