Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG tỉnh lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Hải Dương

Nội dung Đề thi chọn HSG tỉnh lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Hải Dương Bản PDF Đề thi chọn HSG tỉnh Toán lớp 12 năm học 2017 – 2018 sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Môn bóng đá nam SEA GAME có 10 đội bóng tham dự trong đó có Việt Nam và Thái Lan. Chia 10 đội bóng này thành 2 bảng A, B. Mỗi bảng có 5 đội. Tính xác suất sao cho Việt Nam và Thái Lan ở cùng một bảng. [ads] + Cho tứ diện ABCD có AB = CD = c, AC = BD = b, AD = BC = a. a. Tính góc giữa hai đường thẳng AB, CD b. Chứng minh rằng trọng tâm của tứ diện ABCD cách đều tất cả các mặt của tứ diện + Cho hình chóp S.ABCD có SA = x, tất cả các cạnh còn lại có độ dài bằng 1. Tính thể tích khối chóp đó theo x và tìm x để thể tích đó là lớn nhất. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG Toán 12 THPT cấp tỉnh năm học 2017 - 2018 sở GD và ĐT Phú Thọ
Đề thi chọn HSG Toán 12 THPT cấp tỉnh năm học 2017 – 2018 sở GD và ĐT Phú Thọ gồm 6 trang, thời gian làm bài 180 phút, đề thi gồm 2 phần: + Phần tư luận (8 điểm): Gồm 4 bài toán tự luận + Phần trắc nghiệm (12 điểm): Gồm 40 câu trắc nghiệm
Lời giải và bình luận đề thi VMO 2018
Tài liệu gồm 22 trang hướng dẫn giải và bình luận đề thi VMO 2018 (Đề thi chọn học sinh giỏi quốc gia THPT năm 2018 của Bộ giáo dục và Đào tạo). Kỳ thi VMO 2018 được diễn ra trong 2 ngày 11 và 12/01/2018 với tổng cộng 7 bài toán. Tài liệu được biên soạn bởi các thầy, cô giáo và thành viên trong nhóm Epsilon: Trần Nam Dũng, Võ Quốc Bá Cẩn, Lê Phúc Lữ, Trần Quang Hùng, Nguyễn Lê Phước, Nguyễn Văn Huyện.
Đề thi chọn học sinh giỏi Toán 12 cấp tỉnh THPT năm học 2017 - 2018 sở GD và ĐT Hòa Bình
Đề thi chọn học sinh giỏi Toán 12 cấp tỉnh THPT năm học 2017 – 2018 sở GD và ĐT Hòa Bình gồm 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn học sinh giỏi Toán 12 : + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a√2, BC = a và SA = SB = SC = SD = 2a. Gọi K là hình chiếu vuông góc của điểm B trên AC và H là hình chiếu vuông góc của K trên SA. a) Tính thể tích khối chóp S.ABCD theo a. b) Tính diện tích xung quanh của hình nón được tạo thành khi quay tam giác ADC quanh AD theo a. c) Tính cosin góc giữa đường thẳng SB và mặt phẳng (BKH). [ads] + Cho đa giác lồi có 14 đỉnh. Gọi X là tập hợp các tam giác có ba đỉnh là ba đỉnh của đa giác đã cho. Chọn ngẫu nhiên trong X một tam giác. Tính xác suất để tam giác được chọn không có cạnh nào là cạnh của đa giác đã cho. + Trong mặt phẳng với hệ trục tọa độ Oxy, cho điểm K(-2;-5) và đường tròn (C) có phương trình (x – 1)^2 + (y – 1)^2 = 10. Đường tròn (C2) tâm K cắt đường tròn (C) tại hai điểm A, B sao cho dây cung AB = 2√5. Viết phương trình đường thẳng AB.
Đề thi học sinh giỏi Toán 12 cấp tỉnh năm học 2017 - 2018 sở GD và ĐT Ninh Bình
Đề thi học sinh giỏi Toán 12 cấp tỉnh năm học 2017 – 2018 sở GD và ĐT Ninh Bình gồm 8 trang với 56 câu trắc nghiệm khách quan, 05 câu tự luận, kỳ thi diễn ra vào ngày 06 tháng 12 năm 2017, đề thi có đáp án . Trích dẫn đề thi HSG : + Cho hàm số y = log1/3 x. Mệnh đề nào dưới đây là mệnh đề sai? A. Đồ thị hàm số đã cho có một đường tiệm cận đứng B. Hàm số đã cho có đạo hàm y’ = -1/xlog3 ∀x ≠ 0 C. Hàm số đã cho có tập xác định D = R\{0} D. Hàm số đã cho nghịch biến trên mỗi khoảng mà nó xác định [ads] + Bồn chứa nước SƠN HÀ có hình trụ kín cả 2 đáy, trong đó bán kính đường tròn đáy là r và chiều cao của bồn là h. Nhà máy sản xuất bồn tùy theo yêu cầu của khách hàng và cứ tính theo đơn giá 1 triệu đồng 1 m2 vật liệu làm bồn. Một khách hàng đặt 10 triệu đồng để làm một bồn nước SƠN HÀ. Anh hay chị hãy tính giúp vị khách đó kích thước của bồn để bồn đựng được nhiều nước nhất. + Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi K là trung điểm của SC. Mặt phẳng qua AK cắt các cạnh SB, SD lần lượt tại M và N. Gọi V1, V thứ tự là thể tích của khối chóp S.AMKN và khối chóp S.ABCD. Tìm giá trị nhỏ nhất và giá trị lớn nhất của tỷ số V1/V.