Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lý thuyết và phân dạng môn Toán 9 - Nguyễn Ngọc Dũng

Tài liệu gồm 88 trang, được biên soạn bởi thầy giáo Nguyễn Ngọc Dũng, tổng hợp lý thuyết và phân dạng môn Toán 9. MỤC LỤC : I Đại số 1. Chương 1. Căn bậc hai. Căn bậc ba 2. Bài số 1. Căn bậc hai 2. Bài số 2. Liên hệ giữa phép nhân, phép chia và phép khai phương 5. Bài số 3. Biến đổi, rút gọn biểu thức chứa căn bậc hai 5. Bài số 4. Căn bậc ba 8. Bài số 5. Ôn tập chương 1 9. Chương 2. Hàm số. Hàm số bậc nhất 15. Bài số 1. Hàm số, hàm số bậc nhất 15. Bài số 2. Đường thẳng song song – Đường thẳng cắt nhau 16. Bài số 3. Hệ số góc của đường thẳng y = ax + b (a khác 0) 18. Bài số 4. Các bài tập tổng hợp 20. Bài số 5. Các bài toán thực tế ứng dụng hàm số 21. Chương 3. Hệ phương trình bậc nhất hai ẩn 24. Bài số 1. Phương trình và hệ phương trình bậc nhất hai ẩn 24. Bài số 2. Giải hệ phương trình bậc nhất hai ẩn 25. Bài số 3. Giải bài toán bằng cách lập hệ phương trình 28. Chương 4. Hàm số y = ax2 (a khác 0). Phương trình bậc hai 29. Bài số 1. Hàm số y = ax2 (a khác 0) 29. Bài số 2. Phương trình bậc hai một ẩn 34. Bài số 3. Hệ thức Vi-ét và ứng dụng 40. Bài số 4. Phương trình quy về phương trình bậc hai 45. Bài số 5. Giải bài toán bằng cách lập phương trình 48. II Hình học 52. Chương 1. Hệ thức lượng trong tam giác vuông 53. Bài số 1. Hệ thức lượng trong tam giác vuông 53. Bài số 2. Tỉ số lượng giác trong tam giác vuông 54. Bài số 3. Ứng dụng thực tế 56. Chương 2. Đường tròn 61. Bài số 1. Sự xác định đường tròn 61. Bài số 2. Đường kính và dây của đường tròn 61. Bài số 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây 61. Bài số 4. Vị trí tương đối giữa đường thẳng và đường tròn. Dấu hiệu nhận biết tiếp tuyến 62. Chương 3. Góc với đường tròn 65. Bài số 1. Góc ở tâm – Góc nội tiếp – Góc tạo bởi tiếp tuyến và dây cung 65. Bài số 2. Góc có đỉnh bên trong – bên ngoài đường tròn 67. Bài số 3. Tứ giác nội tiếp 68. Bài số 4. Độ dài đường tròn, cung tròn. Diện tích hình tròn, hình quạt 72. Chương 4. Hình trụ – Hình nón – Hình cầu 77. Bài số 1. Diện tích xung quanh và thể tích của hình trụ 77. Bài số 2. Diện tích xung quanh và thể tích của hình nón và hình nón cụt 80. Bài số 3. Diện tích và thể tích của hình cầu 83.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề nhắc lại và bổ sung các khái niệm về hàm số
Nội dung Chuyên đề nhắc lại và bổ sung các khái niệm về hàm số Bản PDF - Nội dung bài viết Chuyên đề hàm số trong toán học Chuyên đề hàm số trong toán học Trong chuyên đề này, chúng ta sẽ cùng nhau tìm hiểu và bổ sung kiến thức về hàm số, một khái niệm quan trọng trong toán học. Hàm số là một mối quan hệ giữa các biến số x và y, trong đó với mỗi giá trị của x, ta luôn tìm được một giá trị tương ứng của y. Điều kiện xác định của hàm số là tất cả các giá trị của x khi thực hiện biểu thức hàm số, ta được kết quả có ý nghĩa. Đồ thị của hàm số là tập hợp các điểm M(x;y) trong mặt phẳng Oxy, thỏa mãn phương trình y = f(x). Chúng ta cũng sẽ tìm hiểu về hàm số đồng biến và hàm số nghịch biến. Hàm số đồng biến là khi giá trị của biến x tăng thì giá trị của hàm số cũng tăng, trong khi hàm số nghịch biến lại ngược lại. Ta cũng sẽ thực hành các dạng bài tập cơ bản và nâng cao như tính giá trị của hàm số, biểu diễn điểm trên mặt phẳng, xét sự đồng biến và nghịch biến, cũng như phát triển tư duy. Cuối cùng, chúng ta sẽ có cơ hội tự luyện và rèn luyện phản xạ thông qua các bài tập trắc nghiệm. Đây sẽ là cơ hội tuyệt vời để củng cố kiến thức và kỹ năng trong chương trình Đại số lớp 9 chương 2 bài số 1. Hãy chuẩn bị tinh thần và cùng nhau khám phá thế giới của hàm số trong toán học nhé!
Chứng minh tứ giác nội tiếp, chứng minh các điểm cùng thuộc một đường tròn
Nội dung Chứng minh tứ giác nội tiếp, chứng minh các điểm cùng thuộc một đường tròn Bản PDF - Nội dung bài viết Chứng minh tứ giác nội tiếp và điểm cùng thuộc đường tròn Chứng minh tứ giác nội tiếp và điểm cùng thuộc đường tròn Tài liệu này bao gồm 18 trang, cung cấp hướng dẫn cụ thể về cách chứng minh tứ giác nội tiếp và cách chứng minh các điểm cùng thuộc một đường tròn. Đây là một dạng bài toán thường gặp trong chương trình Hình học 9 và trong các bài toán khó hơn. Việc này giúp học sinh hiểu rõ hơn về tính chất và cách xác định tứ giác nội tiếp, cũng như cách chứng minh các điểm cùng thuộc một đường tròn. Hướng dẫn trong tài liệu được trình bày một cách dễ hiểu và chi tiết, giúp người đọc nắm bắt được bản chất của vấn đề và áp dụng vào thực hành một cách linh hoạt.
Chuyên đề góc với đường tròn
Nội dung Chuyên đề góc với đường tròn Bản PDF - Nội dung bài viết Chuyên đề góc với đường tròn: Hướng dẫn giải toán học chương 3 Hình học lớp 9 Chuyên đề góc với đường tròn: Hướng dẫn giải toán học chương 3 Hình học lớp 9 Chuyên đề góc với đường tròn là một phần quan trọng của chương trình Hình học lớp 9. Tài liệu này gồm 30 trang, cung cấp hướng dẫn chi tiết về cách giải các dạng toán liên quan đến góc trong đường tròn. Chúng ta sẽ tìm hiểu về các loại góc như góc ở tâm, góc nội tiếp, góc tạo bởi tiếp tuyến và dây cung. Trước tiên, để tính số đo của góc ở tâm, chúng ta cần biết rằng số đo của cung bị chắn bởi góc ở tâm chính là số đo của góc đó. Ngoài ra, chúng ta có thể sử dụng các kiến thức về tỉ lệ lượng giác, quan hệ đường kính và dây cung để giải các bài tập về góc ở tâm. Chủ đề tiếp theo là về góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung. Điểm chung chính là hai góc nội tiếp chắn bởi cùng một cung sẽ bằng nhau. Chúng ta cũng cần quan tâm đến các quy tắc về góc vuông, góc nội tiếp có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung. Chủ đề cuối cùng nói về góc có đỉnh bên trong và bên ngoài đường tròn. Khi gặp các bài toán liên quan đến góc này, chúng ta có thể tính số đo của chúng dựa vào số đo của các cung bị chắn. Quan trọng nhất là nhớ rằng số đo của góc nội tiếp bằng nửa số đo của góc ở tâm cùng chắn một cung. Cuối cùng, tài liệu còn cung cấp một số bài tập thực hành về góc với đường tròn, từ các dạng cơ bản đến phức tạp. Qua việc giải các bài tập này, học sinh sẽ củng cố kiến thức và kỹ năng giải toán, từ đó nắm vững chương trình Hình học lớp 9 chương 3. Đây thực sự là một tài liệu hữu ích giúp học sinh hiểu rõ hơn về chuyên đề góc với đường tròn và áp dụng kiến thức vào việc giải các bài tập thực tế.