Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp tính khoảng cách giữa hai đường thẳng chéo nhau nhờ kĩ thuật dựng song song giữa đường thẳng và mặt phẳng

Tài liệu gồm 13 trang, được biên soạn bởi tác giả Hoàng Xuân Bính (giáo viên Toán trường THPT chuyên Biên Hòa, Hà Nam), hướng dẫn phương pháp tính khoảng cách giữa hai đường thẳng chéo nhau nhờ kĩ thuật dựng song song giữa đường thẳng và mặt phẳng. Trong bài toán thuộc chủ đề khoảng cách thì ta thấy thường xuất hiện bài toán tính khoảng cách giữa hai đường thẳng chéo nhau. Do đó, mình viết chuyên đề này để giúp các thầy cô và các em học sinh có một hướng tiếp cận khi giải quyết bài toán này. I. Kiến thức cơ bản cần nhớ II. Nội dung chuyên đề Để giúp học sinh và các thầy cô có một cách tiếp cận về loại bài tập này, tôi xin trình bày: Phương pháp tính khoảng cách giữa hai đường thẳng chéo nhau nhờ kĩ thuật dựng song song giữa đường với mặt. a) Phương pháp: Để tính khoảng cách giữa hai đường thẳng chéo nhau trong chuyên đề này, chúng ta sử dụng phương pháp đường song song với mặt: Cho a, b là hai đường thẳng chéo nhau thì ta luôn có: d(a;b) = d(a;(P)) với b ⊂ P và a // (P). b) Các tính chất hình học phẳng thường được sử dụng: – Loại 1: Khai thác tính chất hình bình hành (hoặc trong các hình hình thoi, hình chữ nhật, hình vuông): Trong một hình bình hành thì hai cặp cạnh đối diện luôn song song với nhau. – Loại 2: Khai thác tính chất đường trung bình của tam giác. Chú ý: + Để khai thác tính chất đường trung bình trong tam giác, ta chú ý tới các yếu tố trung điểm có sẵn trong đề bài từ đó xây dựng thêm một trung điểm mới để thiết lập đường trung bình từ đó xác định được yếu tố song song mà ta sẽ chuyển đổi được khoảng cách giữa đường với đường về đường với mặt. + Với bài toán có liên quan tới bài toán về hình hộp hoặc lăng trụ tam giác thì ta chú ý một tính chất quen thuộc của lăng trụ là: tâm của các mặt bên cũng chính là trung điểm của hai đường chéo của mặt bên đó. III. Bài tập minh họa Trong chuyên đề này, tôi xin chia các bài toán áp dụng được phương pháp này thành 2 dạng: + Dạng 1. Các bài toán tính khoảng cách giữa hai đường thẳng chéo nhau trong các bài toán về hình chóp. + Dạng 2: Các bài toán tính khoảng cách giữa hai đường thẳng chéo nhau trong các bài toán về lăng trụ. IV. Bài tập tự luyện

Nguồn: toanmath.com

Đọc Sách

Tổng ôn chuyên đề cực trị hình học không gian - Phạm Minh Tuấn
Tài liệu gồm 20 trang tuyển tập 20 bài toán nâng cao thuộc chuyên đề cực trị hình học không gian có phân tích và giải chi tiết. Ngoài ra còn có 3 bài toán áp dụng dành cho bạn đọc tự giải. Bài toán cực trị hình học không gian là các bài toán thuộc mức độ vận dụng cao trong đề thi THPT Quốc gia môn Toán. Trích dẫn tài liệu : + Cho hình chóp S.ABCD với đáy ABCD là hình vuông cạnh a, cạnh bên SB = b và tam giác SAC cân tại S. Trên cạnh AB lấy điểm M với AM = x (0 < x < a). Mặt phẳng qua M song song với AC, SB và cắt BC, SC, SA lần lượt tại N, P, Q. Xác định x để diện tích thiết diện MNPQ đạt giá trị lớn nhất. + Cho hình lập phương ABCD.A’B’C’D’ có cạnh là a và hai điểm M, N lần lượt di động trên các đường chéo A’B và AC sao cho A’M = AN = x. Xác định x để độ dài đoạn thẳng MN đạt giá trị nhỏ nhất. [ads] + Cho hai đường thẳng Ax, By chéo nhau và vuông góc với nhau có AB = a là đường vuông góc chung. Hai điểm M, N lần lượt di động trên Ax, By sao cho MN = b (với b là độ dài cho trước). Xác định độ dài đoạn thẳng AM theo a, b để thể tích tứ diện ABMN đạt giá trị lớn nhất. + Cho tứ diện ABCD, biết BCD là tam giác đều cạnh a và có tâm là điểm O. Mặt cầu ngoại tiếp tứ diện ABCD nhận đường tròn (BCD) làm một đường tròn lớn. Tìm thể tích lớn nhất của tứ diện ABCD. + Cho tam giác đều OAB có cạnh bằng a. Trên đường thẳng d đi qua O và vuông góc với mặt phẳng (OAB) lấy điểm M với OM = x. Gọi E, F lần lượt là các hình chiếu vuông góc của A lên MB, OB. Trên đoạn thẳng EF cắt d tại N. Xác định x để thể tích tứ diện ABMN là nhỏ nhất.
Chuyên đề khoảng cách và thể tích khối đa diện - Hoàng Văn Phiên
Tài liệu gồm 17 trang hệ thống kiến thức từ lớp 8 đến 12 và bài tập các dạng toán trong chuyên đề khoảng cách và thể tích khối đa diện. A – ÔN TẬP KIẾN THỨC 1. Một số hệ thức lượng trong tam giác vuông 2. Một số hệ thức lượng trong tam giác thường 3. Các công thức tính diện tích 4. Quan hệ song song 5. Quan hệ vuông góc 6. Khoảng cách và góc 7. Thể tích khối đa diện [ads] B – CÁC DẠNG BÀI TẬP 1. Hình vẽ trong không gian 2. Khoảng cách trong không gian + Bài toán 1. Khoảng cách từ 1 điểm đến 1 mặt phẳng + Bài toán 2. Khoảng cách giữa hai đường thẳng chéo nhau 3. Bài toán thể tích khối đa diện + Bài toán 1. Đường cao khối đa diện + Bài toán 2. Tỉ số thể tích + Bài toán 3. Phân chia khối đa diện
Chuyên đề hình học không gian dành cho học sinh trung bình - yếu
Kỳ thi THPT Quốc Gia 2016 – 2017 đã cận kề, từ nhu cầu thực tế ôn luyện của các học sinh trung bình và yếu, các thầy cô giáo ở khắp mọi miền trong cả nước đã biên soạn bộ tài liệu ÔN TẬP KỲ THI THPTQG dành cho đối tượng học sinh trung bình. Chuyên đề HÌNH HỌC KHÔNG GIAN được nhóm 04 thầy cô: Lê Văn Định, Dương Phước Sang, Phùng Hoàng Em, Trần Thị Thu Thảo biên soạn nội dung. Hỗ trợ hình học thầy Lê Quang Hòa. Chuyên đề bao gồm 04 nội dung chính: + Phần 1: Đa diện – Thể tích khối đa diện + Phần 2: Mặt nón – Khối nón + Phần 3: Mặt cầu – Khối cầu + Phần 4: Mặt trụ – Khối trụ [ads] Với nội dung các câu hỏi thuộc các mức độ nhận biết và thông hiểu, nhằm giúp học sinh quen với các hình không gian cơ bản nhớ được công thức tính diện tích thể tích và các yếu tố liên quan đến các hình. Với nội dung các câu hỏi thuộc các mức độ nhận biết và thông hiểu, nhằm giúp học sinh quen với các hình không gian cơ bản nhớ được công thức tính diện tích thể tích và các yếu tố liên quan đến các hình.
Một số công thức giải nhanh phần thể tích khối chóp - Nguyễn Chiến
Tài liệu gồm 12 trang tuyển tập các công thức tính nhanh thể tích của các khối chóp thường gặp và bài tập ví dụ minh họa có giải chi tiết. Tài liệu trình bày công thức tính thể tích các dạng hình chóp sau: + Hình chóp SABC với các mặt phẳng (SAB), (SBC), (SAC) vuông góc với nhau từng đôi một, diện tích các tam giác SAB, SBC, SAC lần lượt là S1, S2, S3 + Hình chóp S.ABC có SA vuông góc với (ABC), hai mặt phẳng (SAB) và (SBC) vuông góc với nhau, góc BSC = α, góc ASB = β + Hình chóp đều S.ABC có đáy ABC là tam giác đều cạnh bằng a, cạnh bên bằng b + Hình chóp tam giác đều S.ABC có cạnh đáy bằng a và mặt bên tạo với mặt phẳng đáy góc + Hình chóp tam giác đều S.ABC có các cạnh bên bằng b và cạnh bên tạo với mặt phẳng đáy góc β + Hình chóp tam giác đều S.ABC có các cạnh đáy bằng a, cạnh bên tạo với mặt phẳng đáy góc β [ads] + Hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh bằng a, và SA = SB = SC = SD = b + Hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc tạo bởi mặt bên và mặt phẳng đáy là α + Hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, (SAB) = α, với α ∈ (π/4; π/2) + Hình chóp tứ giác đều S.ABCD có các cạnh bên bằng a, góc tạo bởi mặt bên và mặt đáy là α với α ∈ (0; π/2) + Hình chóp tam giác đều S.ABC có cạnh đáy bằng a. Gọi (P) là mặt phẳng đi qua A song song với BC và vuông góc với (SBC), góc giữa (P) với mặt phẳng đáy là α + Khối tám mặt đều có đỉnh là tâm các mặt của hình lập phương cạnh a + Khối tám mặt đều cạnh a. Nối tâm của các mặt bên ta được khối lập phương Bài tập minh họa áp dụng công thức Một số công thức giải nhanh phần tỉ lệ thể tích