Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2021 - 2022 sở GDĐT Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Nghệ An; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2021 – 2022 sở GD&ĐT Nghệ An : + Cho các số thực không âm a b c thỏa mãn a + b + c =< 3. Tìm giá trị nhỏ nhất của biểu thức P. + Cho đường tròn (O) và dây cung BC cố định (BC khác đường kính). Điểm A thuộc cung lớn BC sao cho tam giác ABC nhọn và AB < AC. Đường tròn (I) nội tiếp tam giác ABC tiếp xúc với các cạnh BC, AB lần lượt tại D, E. Đường thẳng AD cắt đường tròn (I) tại điểm thứ hai là M; BM cắt đường tròn (I) tại điểm thứ hai là Q; BI cắt DE tại P. a) Chứng minh tứ giác IPQM nội tiếp. b) Chứng minh BME = DMP. c) Đường tròn đi qua C tiếp xúc với Al tại I cắt BC tại H và cắt (O) tại điểm thứ hai là K. Chứng minh khi A di động trên (O) thì đường thắng HK luôn đi qua một điểm cố định. + Trong một hoạt động ngoại khóa có 20 giáo viên và 80 học sinh đến từ nhiều nơi tham gia. Biết rằng mỗi giáo viên quen với ít nhất 65 người và mỗi học sinh quen với tối đa 12 người (quan hệ quen được xem là có tính 2 chiều: Người A quen người B thì người B cũng quen người A). Ban tổ chức xếp họ thành 41 nhóm. Hỏi ban tổ chức có thể xếp sao cho nhóm nào cũng có 2 người quen nhau không? Vì sao?

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 sở GDĐT thành phố Đà Nẵng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi lớp 9 cấp thành phố môn Toán năm học 2021 – 2022 sở Giáo dục và Đào tạo thành phố Đà Nẵng; kỳ thi được diễn ra vào sáng thứ Năm ngày 24 tháng 02 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 sở GD&ĐT thành phố Đà Nẵng : + Trong phòng họp của công ty có một số ghế dài. Nếu xếp mỗi ghế bốn người dự họp thì thiếu một ghế. Nếu xếp mỗi ghế năm người dự họp thì thừa một ghế. Hỏi phòng họp của công ty có bao nhiêu ghế và bao nhiêu người dự họp? + Cho tam giác ABC, gọi M là trung điểm cạnh BC. Trên tia đối của tia CA lấy điểm D (DC > AC). Gọi N là trung điểm đoạn AD, kẻ đường thẳng qua D song song MN, cắt AB tại E. Hai đường thẳng EC và BD cắt nhau tại O. Chứng minh rằng tam giác ODE và tứ giác ABOC có diện tích bằng nhau. + Cho hình vuông ABCD tâm O. Lấy điểm E trên đoạn AB (E khác B và A), gọi F là giao điểm của CE và DA, đường thẳng DE cắt đường tròn (O;OA) tại điểm K (K khác D). Qua K kẻ tiếp tuyến KH với đường tròn (O;AB/2) (H thuộc (O;OA) và nằm khác phía với D qua FC). a) Chứng minh rằng tứ giác KHDA là hình thang cân. b) Chứng minh rằng F, K, H thẳng hàng.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Nam Từ Liêm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi lớp 9 cấp quận môn Toán năm học 2021 – 2022 phòng Giáo dục và Đào tạo quận Nam Từ Liêm, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 24 tháng 02 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Nam Từ Liêm – Hà Nội : + Có 75 bóng đèn gồm 30 bóng xanh, 25 bóng đỏ, 20 bóng vàng. Mỗi lượt người ta đổi màu của hai bóng khác màu sang màu thứ ba (chẳng hạn đổi màu một bóng xanh và một bóng đỏ thành hai bóng vàng). Có thể xảy ra được toàn bộ 75 bóng đèn đều cùng một màu hay không? Vì sao? + Cho tam giác ABC nội tiếp đường tròn (O). Đường tròn tâm I nội tiếp tam giác ABC, tiếp xúc với 3 cạnh BC, CA, AB lần lượt tại các điểm M, N, P. Gọi Q là hình chiếu vuông góc của M xuống NP (Q thuộc NP). Kẻ BH, CT lần lượt vuông góc với đường thẳng PN (H và T thuộc PN) a) Chứng minh: Tam giác BPH đồng dạng tam giác CNT b) Chứng minh: QM là tia phân giác góc BQC c) Gọi G là điểm chính giữa cung BAC của đường tròn (O). GM cắt (O) tại E. Chứng minh: A, Q, E thẳng hàng. + Cho a, b, c là các số thực khác 0 thỏa mãn: a b c. Chứng minh a, b, c đôi một khác nhau thì a2b2c2 = 1.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Vũng Tàu - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thành phố môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND thành phố Vũng Tàu, tỉnh Bà Rịa – Vũng Tàu.
Đề thi chọn học sinh giỏi cấp tỉnh Toán THCS năm 2022 sở GDĐT Quảng Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán bậc THCS năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Quảng Ninh (bảng A và bảng B); kỳ thi được diễn ra vào thứ Tư ngày 23 tháng 02 năm 2022.