Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu lớp 9 môn Toán chủ đề rút gọn biểu thức chứa căn thức bậc hai

Nội dung Tài liệu lớp 9 môn Toán chủ đề rút gọn biểu thức chứa căn thức bậc hai Bản PDF - Nội dung bài viết Tài liệu Tối ƒnghiệp về Rút Gọn Biểu Thông Chứa Căn Thức Bậc Hai Tài liệu Tối ƒnghiệp về Rút Gọn Biểu Thông Chứa Căn Thức Bậc Hai Tài liệu này được thiết kế đặc biệt cho học sinh lớp 9, cung cấp kiến thức cơ bản và bài tập thực hành về chủ đề rút gọn biểu thức chứa căn thức bậc hai trong môn Toán. Tài liệu gồm tổng cộng 22 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập hướng dẫn chi tiết. Kiến Thức Cần Nhớ: Quy trình rút gọn biểu thức chứa căn thức bậc hai bao gồm các bước sau: Tìm điều kiện xác định của biểu thức. Phân tích tử số và mẫu số thành nhân tử rồi rút gọn nếu có thể. Quy đồng. Phá ngoặc bằng cách nhân khai trển các hạng tử với nhau hoặc khi triển hằng đẳng thức. Thu gọn bằng cách cộng, trừ các hạng tử đồng dạng. Phân tích tử thành nhân tử. Rút gọn lần cuối. Các Dạng Toán: Trong tài liệu này, học sinh sẽ được hướng dẫn về các dạng toán sau: Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biểu thức khi biết giá trị của biến. Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biến khi biết giá trị của biểu thức. Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biến để biểu thức nhận giá trị nguyên. Rút gọn biểu thức chứa căn bậc hai và so sánh biểu thức với một số (hoặc một biểu thức khác). Rút gọn biểu thức chứa căn bậc hai và tìm giá trị nhỏ nhất hoặc lớn nhất của biểu thức. Bài Tập Tổng Hợp: Tài liệu cũng cung cấp một loạt bài tập trắc nghiệm và tự luyện để học sinh có thể ôn tập và áp dụng kiến thức đã học vào thực tế. Để thuận tiện cho việc sử dụng, tài liệu còn được cung cấp dưới dạng file Word cho quý thầy, cô giáo có thể sử dụng để in và phát cho học sinh. Với tài liệu này, học sinh sẽ có cơ hội nâng cao kiến thức và kỹ năng giải toán rút gọn biểu thức chứa căn thức bậc hai một cách hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Một kỹ năng khi sử dụng phương pháp đặt ẩn phụ giải phương trình - hệ phương trình
Tài liệu gồm 05 trang, được biên soạn bởi thầy giáo Vũ Hồng Phong (giáo viên Toán trường THPT Tiên Du 1, huyện Tiên Du, tỉnh Bắc Ninh), hướng dẫn một kỹ năng khi sử dụng phương pháp đặt ẩn phụ giải phương trình – hệ phương trình. 1. KIẾN THỨC CẦN NHỚ. Một điều quan trọng giúp chúng ta giải được một phương trình (PT) hay hệ phương trình bằng cách đặt ẩn phụ đó là phát hiện được các mối liên hệ giữa các ẩn với nhau. Mối liên hệ này gồm có: + Mối liên hệ giữa các ẩn mới. + Mối liên hệ giữa các ẩn cũ. + Mối liên hệ giữa các ẩn mới với các ẩn cũ. Mối liên hệ giữa các ẩn được thể hiện dưới dạng các đẳng thức hoặc bất đẳng thức. 2. VÍ DỤ MINH HỌA. 3. BÀI TẬP ĐỀ NGHỊ.
Chuyên đề toán thực tế môn Toán 9 - Nguyễn Ngọc Dũng
Tài liệu gồm 52 trang, được biên soạn bởi thầy giáo Nguyễn Ngọc Dũng, phân dạng và tuyển chọn các bài toán thực tế môn Toán 9. MỤC LỤC : Bài số 1. Định lý Vi-ét và ứng dụng 1. Bài số 2. Kỹ năng làm toán thực tế “Hàm số và đồ thị” 2. Bài số 3. Giải toán bằng cách lập phương trình, hệ phương trình 15. Bài số 4. Các bài toán thực tế liên quan “Hình không gian” 24. Bài số 5. Các bài toán thực tế liên quan “Hình học phẳng” 38.
31 chủ đề học tập Đại số 9
Tài liệu gồm 246 trang, tuyển tập 31 chủ đề học tập Đại số 9. Chương 1 – Chủ đề 1. Căn bậc hai. Chương 1 – Chủ đề 2. Căn thức bậc hai và hằng đẳng thức. Chương 1 – Chủ đề 3. Liên hệ phép nhân, phép chia. Chương 1 – Chủ đề 4. Biến đổi đơn giản biểu thức chứa căn bậc hai. Chương 1 – Chủ đề 5. Rút gọn biểu thức chứa căn bậc hai. Chương 1 – Chủ đề 6. Căn bặc ba. Chương 1 – Chủ đề 7. Ôn tập chương 1. Chương 1 – Chủ đề 8 + 9. Kiểm tra khảo sát và chữa đề. Chương 2 – Chủ đề 1. Nhắc lại và bổ sung về hàm số bậc nhất. Chương 2 – Chủ đề 2. Hàm số bậc nhất. Chương 2 – Chủ đề 3. Đồ thị hàm số bậc nhất. Chương 2 – Chủ đề 4. Vị trí tương đối giữa hai đường thẳng. Chương 2 – Chủ đề 5. Hệ số góc của đường thẳng. Chương 2 – Chủ đề 6. Tổng ôn tập chương 2. Chương 2 – Chủ đề 7. Kiểm tra khảo sát và chữa bài. Chương 3 – Chủ đề 1. Phương trình bậc nhất hai ẩn. Chương 3 – Chủ đề 2. Hệ phương trình bậc nhất hai ẩn. Chương 3 – Chủ đề 3. Giải hệ phương trình bằng phương pháp thế. Chương 3 – Chủ đề 4. Giải hệ phương trình bằng phương pháp cộng đại số. Chương 3 – Chủ đề 5. Hệ phương trình bậc nhất hai ẩn. Chương 3 – Chủ đề 6. Giải bài toán bằng cách lập hệ phương trình. Chương 3 – Chủ đề 7. Tổng ôn tập chương 3. Chương 3 – Chủ đề 8. Kiểm tra khảo sát chất lượng ôn tập chương 3. Chương 4 – Chủ đề 1. Hàm số y = ax2 (a ≠ 0) và đồ thị. Chương 4 – Chủ đề 2. Công thức nghiệm. Chương 4 – Chủ đề 3. Hệ thức vi. Ét và ứng dụng. Chương 4 – Chủ đề 4. Phương trình quy về phương trình bậc hai. Chương 4 – Chủ đề 5. Giải bài toán bằng cách lập phương trình. Chương 4 – Chủ đề 6. Bài toán vể đường thang và parabol. Chương 4 – Chủ đề 7. Tổng ôn tập chương 4. Chương 4 – Chủ đề 8. Kiểm tra khảo sát chất lượng ôn tập.