Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Olympic Toán 7 đợt 1 năm 2022 - 2023 phòng GDĐT Ứng Hòa - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 đợt 1 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Ứng Hòa, thành phố Hà Nội. Trích dẫn Đề Olympic Toán 7 đợt 1 năm 2022 – 2023 phòng GD&ĐT Ứng Hòa – Hà Nội : + Ba lớp 7A, 7B, 7C cùng mua một số gói tăm từ thiện, lúc đầu số gói tăm dự định chia cho ba lớp tỉ lệ với 5 : 6 : 7 nhưng sau đó chia theo tỉ lệ 4 : 5 : 6 nên có một lớp nhận nhiều hơn dự định 4 gói. Tính tổng số gói tăm mà ba lớp đã mua. + Cho ∆ABC có AB AC vẽ đường phân giác AD. Trên cạnh AC lấy điểm E sao cho AE AB. a) Chứng minh: BD DE. b) Gọi K là giao điểm của AB và ED. Chứng minh rằng: DBK DEC. c) ∆ABC cần có thêm điều kiện gì để D cách đều ba cạnh của ∆AKC. + Ông Nam gửi ngân hàng 100 triệu, lãi suất 8%/năm. Hỏi sau 36 tháng số tiền cả gốc và lãi thu được là bao nhiêu? (Biết nếu tiền lãi không rút ra thì tiền lãi đó sẽ nhập vào vốn để tính lãi cho các kì hạn tiếp theo).

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG cấp trường lớp 7 môn Toán năm 2020 2021 trường THCS Cẩm Bình Hà Tĩnh
Nội dung Đề thi HSG cấp trường lớp 7 môn Toán năm 2020 2021 trường THCS Cẩm Bình Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi HSG cấp trường lớp 7 môn Toán năm 2020-2021 trường THCS Cẩm Bình Hà Tĩnh Đề thi HSG cấp trường lớp 7 môn Toán năm 2020-2021 trường THCS Cẩm Bình Hà Tĩnh Đề thi HSG cấp trường môn Toán lớp 7 năm học 2020-2021 của trường THCS Cẩm Bình - Hà Tĩnh là bài thi có tính chất khá nặng, yêu cầu kiến thức và sự suy luận logic cao. Bài thi gồm 10 câu dạng ghi kết quả và 01 câu tự luận, thời gian làm bài 120 phút. Trong đề thi, có một số câu hỏi khó như: + Trong tam giác ABC, các tia phân giác của góc B và góc C cắt nhau tại O. Hỏi số đo của góc A khi biết BOC = 120°? + Tìm số có ba chữ số, biết rằng số đó chia hết cho 18 và các chữ số của nó tỉ lệ với ba số 1, 2 và 3. + Cho tam giác ABC có ba góc nhọn và AB < AC. Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao điểm của BE và CD. a) Chứng minh ABE = ADC. b) Tính số đo góc BIC. Bài thi này đòi hỏi sự tư duy, logic và kiến thức toán học sâu rộng từ các em học sinh lớp 7. Hy vọng rằng đề thi sẽ giúp các em rèn luyện kỹ năng giải toán và tự tin hơn trong việc học Toán.
Đề thi học sinh giỏi lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Trực Ninh Nam Định
Nội dung Đề thi học sinh giỏi lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Trực Ninh Nam Định Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 7 năm 2020 – 2021 phòng GD&ĐT Trực Ninh – Nam Định Đề thi học sinh giỏi Toán lớp 7 năm 2020 – 2021 phòng GD&ĐT Trực Ninh – Nam Định Đề thi học sinh giỏi Toán lớp 7 năm 2020 – 2021 phòng GD&ĐT Trực Ninh – Nam Định đã được biên soạn theo hình thức đề thi 100% tự luận. Đề bao gồm 01 trang với 05 bài toán, thời gian làm bài được xác định là 120 phút. Trích dẫn đề thi học sinh giỏi Toán lớp 7 năm 2020 – 2021 phòng GD&ĐT Trực Ninh – Nam Định: Cho tam giác ABC vuông tại A có B 2C. Kẻ AH vuông góc với BC. Trên tia HC lấy điểm D sao cho H là trung điểm của HD. Từ C kẻ đường thẳng CE vuông góc với đường thẳng AD. Hỏi tam giác ABD là tam giác gì? Vì sao? Chứng minh rằng DH/DE = HE/AC. So sánh 2HE và 2BC/AD. Gọi K là giao điểm của AH và CE, lấy điểm I bất kỳ trên đoạn thẳng HE sao cho I khác H và I khác E. Chứng minh AC/IA = IA/IK = IC. Chứng minh rằng đa thức sau không có nghiệm. Chứng minh rằng 2021^10 – 539^9 là một số tự nhiên. Đề thi đưa ra những bài toán đa dạng và phong phú, giúp học sinh rèn luyện kỹ năng tư duy logic, giải quyết vấn đề một cách logic và chính xác. Đây là cơ hội tốt để học sinh thử sức và phát triển khả năng toán học của mình.
Đề thi HSG lớp 7 môn Toán năm 2020 2021 trường THCS Kim Đồng Quảng Nam
Nội dung Đề thi HSG lớp 7 môn Toán năm 2020 2021 trường THCS Kim Đồng Quảng Nam Bản PDF - Nội dung bài viết Đề thi HSG lớp 7 môn Toán năm 2020-2021 trường THCS Kim Đồng Quảng Nam Đề thi HSG lớp 7 môn Toán năm 2020-2021 trường THCS Kim Đồng Quảng Nam Vào ngày ... tháng ... năm 2021, tại trường THCS Kim Đồng - thành phố Hội An, tỉnh Quảng Nam đã diễn ra kỳ thi khảo sát học sinh giỏi lớp 7 môn Toán trong năm học 2020-2021. Đề thi HSG môn Toán dành cho học sinh lớp 7 năm 2020-2021 tại trường THCS Kim Đồng - Quảng Nam bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài được giao là 120 phút. Mục tiêu của kỳ thi này là để đánh giá và khuyến khích sự học tập, rèn luyện năng lực Toán học của các em học sinh lớp 7. Đề thi được thiết kế để đánh giá kỹ năng tự giải quyet của học sinh, khuyến khích sự sáng tạo và tư duy logic trong giải quyet bài toán. Kỳ thi HSG môn Toán năm 2020-2021 tại trường THCS Kim Đồng - Quảng Nam đã thu hút sự quan tâm và tích cực tham gia của đông đảo học sinh, đồng thời cũng là cơ hội để các em thể hiện khả năng và kiến thức của mình.
Đề thi Olimpic lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Quốc Oai Hà Nội
Nội dung Đề thi Olimpic lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Quốc Oai Hà Nội Bản PDF - Nội dung bài viết Đề thi Olimpic Toán lớp 7 năm 2020 – 2021 phòng GD&ĐT Quốc Oai – Hà Nội Đề thi Olimpic Toán lớp 7 năm 2020 – 2021 phòng GD&ĐT Quốc Oai – Hà Nội Chào mừng đến với đề thi Olimpic Toán lớp 7 năm 2020 – 2021 của phòng GD&ĐT Quốc Oai – Hà Nội. Đề thi này bao gồm các câu hỏi và bài toán thú vị dành cho các em học sinh lớp 7. Trích dẫn một số câu hỏi trong đề thi: Ba thửa ruộng hình chữ nhật A, B, C có cùng diện tích. Chiều rộng của 3 thửa ruộng A, B, C lần lượt tỷ lệ với 3 ; 4 ; 5. Chiều dài của thửa ruộng A nhỏ hơn tổng chiều dài của 2 thửa ruộng B và C là 35m. Hãy tính chiều dài mỗi thửa ruộng. Chứng minh rằng trong tam giác ABC vuông cân tại A và M là trung điểm của BC, điểm D bất kỳ trên đoạn BM, H, I lần lượt là hình chiếu của B, C trên đường thẳng AD: a/ BH = AI, b/ BH2 + CI2 có giá trị không đổi, c/ IM là phân giác của DIC. Cho tam giác ABC cân tại A có A 3C. Vẽ tia Cx sao cho CA là tia phân giác của BCx, Cx cắt BA tại D. Trong hình vẽ có bao nhiêu tam giác cân? Vì sao? Đề thi này sẽ giúp các em ôn tập và rèn luyện kỹ năng giải các bài toán toán học một cách logic và chính xác. Chúc các em thành công trong việc giải đề thi Olimpic Toán lớp 7 năm 2020 – 2021!