Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hướng dẫn giải bài toán tích phân hàm ẩn - Nguyễn Hoàng Việt

Tích phân hàm ẩn là một dạng toán thuộc mức độ vận dụng – vận dụng cao, được xuất hiện khá nhiều sau khi Bộ Giáo dục và Đào tạo quyết định thay đổi hình thức thi THPT Quốc gia môn Toán từ dạng tự luận sang dạng trắc nghiệm, trong đó hàm số cần tính nguyên hàm – tích phân không được cho ở dạng tường minh mà được “ẩn” kèm theo một số điều kiện có sẵn, điều này giúp làm hạn chế khả năng can thiệp của máy tính cầm tay trong quá trình giải toán, đòi hỏi học sinh cần phải tư duy nhiều hơn. Dạng toán tích phân hàm ẩn cũng ít xuất hiện trong sách giáo khoa Giải tích 12 cơ bản và nâng cao, do đó nhiều học sinh sẽ cảm thấy bỡ ngỡ khi bắt gặp dạng toán này. Để giúp các em có thể nắm được một số phương pháp giải quyết bài toán tích phân hàm ẩn, giới thiệu đến các em tài liệu hướng dẫn giải bài toán tích phân hàm ẩn, tài liệu gồm 89 trang được biên soạn bởi thầy Nguyễn Hoàng Việt bao gồm 84 ví dụ minh họa và 75 bài tập tích phân hàm ẩn có lời giải chi tiết, các bài tập được trích dẫn từ các đề thi thử THPT Quốc gia môn Toán. [ads] Mục lục tài liệu hướng dẫn giải bài toán tích phân hàm ẩn – Nguyễn Hoàng Việt: Dạng 1 . Áp dụng định nghĩa, tính chất nguyên hàm. Dạng 2 . Áp dụng định nghĩa, tính chất, giải hệ tích phân. Dạng 3 . Tích phân hàm ẩn – phương pháp đổi biến. Tích phân hàm ẩn đổi biến dạng 1: Ta gặp ở bài toán đơn giản loại 1. Tích phân hàm ẩn đổi biến dạng 2: Bài tập thường cho ở dạng 2. Một số chú ý đặc sắc với tích phân hàm ẩn đổi biến: + Chú ý 1. Với những hàm số có tính chẵn lẻ ta cần nhớ. + Chú ý 2. Cách đổi biến ngược đối với hàm số luôn đồng biến hoặc luôn nghịch biến. + Chú ý 3. Bài toán tích phân có dạng sau. + Chú ý 4. Một số bài toán không theo khuôn mẫu sẵn thì yêu cầu học sinh phải có tư duy, có kĩ năng biến đổi để đưa về dạng quen thuộc. Dạng 4 . Phương pháp từng phần.

Nguồn: toanmath.com

Đọc Sách

Ứng dụng của tích phân - Lê Bá Bảo
Tài liệu gồm 31 trang, trình bày lý thuyết, các dạng toán, ví dụ mẫu và bài tập về chuyên đề ứng dụng của tích phân. Nội dung tài liệu gồm: Ứng dụng 1: TÍNH DIỆN TÍCH HÌNH PHẲNG I. LÝ THUYẾT + Bài toán 1: Diện tích S của hình phẳng giới hạn bởi đồ thị của hàm số f(x) liên tục trên đoạn [a; b], trục hoành và hai đường thẳng x = a, x = b. + Bài toán 2: Diện tích S của hình phẳng giới hạn bởi các đồ thị của hàm số f(x), g(x) liên tục trên [a; b] và hai đường thẳng x = a, x = b. + Bài toán 3: Hình phẳng giới hạn bởi nhiều hơn hai đường cong. II. PHƯƠNG PHÁP Phương pháp: Sử dụng tính chất cơ bản của tích phân (thêm cận trung gian) để tính tích phân chưa dấu giá trị tuyệt đối (GTTĐ). III. BÀI TẬP TRẮC NGHIỆM MINH HỌA Gồm các bài toán ứng dụng của tích phân để tính diện tích hình phẳng có lời giải chi tiết. IV. BÀI TẬP TRẮC NGHIỆM TỰ LUYỆN Gồm 60 câu trắc nghiệm về ứng dụng của tích phân để tính diện tích hình phẳng. [ads] Ứng dụng 2: TÍNH THỂ TÍCH VẬT THỂ I. LÝ THUYẾT + Bài toán 1: Tính thể tích của vật thể. + Bài toán 2: Tính thể tích khối tròn xoay (Một hình phẳng quay quanh một trục nào đó tạo nên một khối tròn xoay). II. BÀI TẬP TRẮC NGHIỆM MINH HỌA Gồm các bài toán ứng dụng của tích phân để tính thể tích vật thể có lời giải chi tiết. III. BÀI TẬP TRẮC NGHIỆM TỰ LUYỆN Gồm 51 câu trắc nghiệm về ứng dụng của tích phân để tính thể tích vật thể.
Tích phân hạn chế máy tính cầm tay - Đặng Việt Đông
Tài liệu gồm 18 trang, trình bày 124 bài tập trắc nghiệm tích phân hạn chế máy tính cầm tay – đó là các bài tập tích phân mà máy tính Casio khó can thiệp vào cách giải, các bài toán đều có đáp án. Tài liệu được biên soạn bởi thầy Đặng Việt Đông.
Nguyên hàm, tích phân chống casio - phân thức và đổi biến - Mẫn Ngọc Quang
Tài liệu gồm 24 trang, trình bày một số dạng toán nguyên hàm, tích phân mà máy tính Casio khó can thiệp vào cách giải. Tài liệu trình bày 4 dạng toán: + Dạng 1: Đồng nhất hệ số – mẫu có dạng tích + Dạng 2: Nhảy lầu + Dạng 3: Mẫu số có chứa biểu thức bình phương + Dạng 4: Bậc tử số lớn hơn mẫu [ads]
Chinh phục nguyên hàm - tích phân từ A đến Z - Nguyễn Hữu Bắc
Sách gồm 480 trang trình bày chi tiết hầu hết những dạng toán nguyên hàm – tích phân thường gặp trong chương trình Toán 12. Nội dung sách : Chương mở đầu + Mối liên hệ giữa nguyên hàm và tích phân + Ý nghĩa A. Lý thuyết Chương I. Nguyên hàm I. Khái niệm nguyên hàm II. Tính chất nguyên hàm Chương II. Tích phân I. Khái niệm về tích phân II. Tính chất của tích phân III. Các phương pháp tính nguyên hàm – tích phân thường gặp Chương III. Bảng nguyên hàm các hàm số cơ bản Chương IV. Cách tạo dạng tích phân B. Phương pháp tìm nguyên hàm – tích phân Chương I. Phương pháp vi phân Chương II. Phương pháp bảng nguyên hàm Chương III. Phương pháp đổi biến số I. Phương pháp II. Đổi biến số hàm vô tỷ III. Đổi biến hàm đa thức bậc cao IV. Đổi biến hàm lượng giác V. Hàm dưới dấu tích phân chứa các biểu thức bậc nhất của sinx, cosx VI. Đổi biến dựa vào cận Chương IV. Phương pháp tích phân từng phần I. Kỹ thuật chọn hệ số C II. Kỹ thuật tính nhanh III. Phân dạng – phương pháp [ads] C. Nguyên hàm – Tích phân các loại hàm số Chương I. Nguyên hàm – tích phân các hàm đa thức I. Hàm số tìm nguyên hàm II. Phương pháp III. Bài tập vận dụng Chương II. Tích phân hàm hữu tỉ I. Hàm số tìm nguyên hàm II. Phương pháp III. Kỹ thuật nhẩm hệ số trong đồng nhất thức IV. Nguyên tắc giải V. Bài tập áp dụng Chương III. Tích phân hàm vô tỉ Chương IV. Tích phân hàm lượng giác I. Hàm số tìm nguyên hàm II. Phương pháp III. Các công thức lượng giác thường sử dụng IV. Các dạng nguyên hàm lượng giác thường gặp Chương V. Tích phân hàm số mũ – logarit Chương VI. Tích phân hàm trị tuyệt đối Chương VII. Tích phân liên kết Chương VIII. Tích phân trong đề thi đại học từ 2002 đến 2015 Chương IX. Tích phân trong các đề thi thử đại học Chương X. Những bài toán tích phân khó D. Ứng dụng tích phân Chương I. Ứng dụng tích phân để tính diện tích I. Diện tích hình phẳng giới hạn bởi các đường cong II. Diện tích hình tròn III. Diện tích hình Elip Chương II. Ứng dụng tích phân để tính thể tích I. Thể tích V sinh bởi diện tích S (tạo bởi một đường cong với trục) II. Thể tích V sinh bởi diện tích S (tạo bởi từ hai đường cong) Chương III. Sai lầm khi tính tích phân