Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Kỹ thuật giảm biến và ứng dụng đạo hàm tìm GTNN - GTLN biểu thức nhiều biến

Tài liệu gồm 16 trang, được biên soạn bởi cô giáo Võ Thị Ngọc Ánh (trường THPT Chuyên Nguyễn Tất Thành, tỉnh Kon Tum), hướng dẫn một số kỹ thuật giảm biến và ứng dụng của đạo hàm để tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức nhiều biến, hỗ trợ học sinh lớp 12 ôn thi học sinh giỏi môn Toán 12 cấp tỉnh. I. MỘT SỐ KỸ THUẬT GIẢM BIẾN VÀ ỨNG DỤNG CỦA ĐẠO HÀM ĐỂ TÌM GIÁ TRỊ NHỎ NHẤT, GIÁ TRỊ LỚN NHẤT CỦA BIỂU THỨC HAI BIẾN. 1. Các bước giải bài toán. Bước 1: Sử dụng các kĩ thuật giảm biến đưa biểu thức P = f(t) (t cũng có thể là x hoặc y) hoặc so sánh bất đẳng thức (≤, ≥) giữa P với hàm một biến f(t). + Kỹ thuật 1: Thế biến để chuyển P về một biến (là một trong các biến đã cho). + Kỹ thuật 2: Đặt biến phụ để chuyển P về một biến (là biến phụ đã đặt). + Kỹ thuật 3: Đánh giá bất đẳng thức (≤, ≥) và đặt biến phụ (nếu cần) để chuyển việc đánh giá P về khảo sát hàm một biến. Bước 2: Sử dụng các điều kiện ràng buộc (*), các bất đẳng thức cơ bản (được chứng minh trước đó) để tìm điều kiện “chặt” của biến t, thực chất đây là miền giá trị của t khi x, y thay đổi thỏa điều kiện (*). Bước 3: Xét sự biến thiên của hàm f(t) và suy ra kết quả về giá trị nhỏ nhất, giá trị lớn nhất (nếu có) của biểu thức P. 2. Các ví dụ minh họa. Kĩ thuật 1: Thế biến để đưa biểu thức P về một biến. Kĩ thuật 2: Đặt biến phụ để đưa biểu thức P về biểu thức theo một biến. + Dạng 1: Đặt biến phụ đối với biểu thức P có dạng đối xứng. + Dạng 2: Đặt biến phụ đối với điều kiện (*) là tổng các hạng tử đồng bậc hoặc biểu thức P thể hiện tính “đồng bậc” (đối với các biến x và y). Kĩ thuật 3: Đánh giá bất đẳng thức (≤, ≥) và đặt biến phụ (nếu cần) để chuyển việc đánh giá P về khảo sát hàm một biến. 3. Bài tập rèn luyện. II. MỘT SỐ KỸ THUẬT GIẢM BIẾN VÀ ỨNG DỤNG CỦA ĐẠO HÀM ĐỂ TÌM GIÁ TRỊ NHỎ NHẤT, GIÁ TRỊ LỚN NHẤT CỦA BIỂU THỨC BA BIẾN. 1. Các bước giải bài toán. Bước 1: Sử dụng các kĩ thuật giảm biến đưa biểu thức P = f(t) (t cũng có thể là x, y hoặc z) hoặc so sánh bất đẳng thức (≤, ≥)giữa P với hàm một biến f(t). + Kỹ thuật 1: Thế biến để chuyển P về một biến (là một trong các biến đã cho). + Kỹ thuật 2: Đặt biến phụ để chuyển P về một biến (là biến phụ đã đặt). + Kỹ thuật 3: Đánh giá bất đẳng thức (≤, ≥) và đặt biến phụ (nếu cần) để chuyển việc đánh giá P về khảo sát hàm một biến. Bước 2: Sử dụng các điều kiện ràng buộc (*), các bất đẳng thức cơ bản (được chứng minh trước đó) để tìm điều kiện “chặt” của biến t, thực chất đây là miền giá trị của t khi x, y, z thay đổi thỏa điều kiện (*). Bước 3: Xét sự biến thiên của hàm f(t) và suy ra kết quả về giá trị nhỏ nhất, giá trị lớn nhất (nếu có) đối với P. 2. Các ví dụ minh họa. Kỹ thuật 1: Thế biến để đưa biểu thức về một biến. Kỹ thuật 2: Đặt biến phụ để đưa biểu thức về một biến. Kỹ thuật 3: Đánh giá bất đẳng thức (≤, ≥) để so sánh biểu thức P với biểu thức chứa một biến. 3. Bài tập rèn luyện.

Nguồn: toanmath.com

Đọc Sách

Bài giảng cơ bản và nâng cao Toán 10 (Tập 2 Hình học 10)
Tài liệu gồm 301 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tổng hợp đầy đủ lý thuyết, các dạng toán và bài tập từ cơ bản đến nâng cao các chuyên đề Toán lớp 10 phần Hình học. Khái quát nội dung tài liệu bài giảng cơ bản và nâng cao Toán 10 (Tập 2: Hình học 10): CHƯƠNG 1 . VECTƠ. BÀI 1. ĐỊNH NGHĨA. Dạng 1: Xác định một vectơ; phương, hướng của vectơ; độ dài của vectơ. Dạng 2: Chứng minh hai vectơ bằng nhau. BÀI 2. TỔNG VÀ HIỆU HAI VECTƠ. Dạng 1: Xác định độ dài tổng, hiệu của các vectơ. Dạng 2: Chứng minh đẳng thức vectơ. BÀI 3. TÍCH VECTƠ VỚI MỘT SỐ. Dạng 1: Dựng và tính độ dài vectơ chứa tích một vectơ với một số. Dạng 2: Chứng minh đẳng thức vectơ. Dạng 3: Xác định điểm M thoả mãn một đẳng thức vectơ cho trước. Dạng 4: Phân tích một vectơ theo hai vectơ không cùng phương. Dạng 5: Chứng minh hai điểm trùng nhau, hai tam giác cùng trọng tâm. Dạng 6: Tìm tập hợp điểm thỏa mãn điều kiện vectơ cho trước. Dạng 7: Xác định tính chất của hình khi biết một đẳng thức vectơ. Dạng 8: Chứng minh bất đẳng thức và tìm cực trị liên quan đến độ dài vectơ. BÀI 4. HỆ TRỤC TỌA ĐỘ. Dạng 1: Tìm tọa độ điểm, tọa độ vectơ trên mặt phẳng Oxy. Dạng 2: Xác định tọa độ điểm, vectơ liên quan đến biểu thức dạng u + v, u – v, ku. Dạng 3: Xác định tọa độ các điểm của một hình. Dạng 4: Bài toán liên quan đến sự cùng phương của hai vectơ. Phân tích một vectơ qua hai vectơ không cùng phương. CHƯƠNG 2 . TÍCH VÔ HƯỚNG HAI VECTƠ VÀ ỨNG DỤNG. BÀI 1. GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GÓC BẤT KỲ TỪ 0 ĐỘ ĐẾN 180 ĐỘ. Dạng 1: Xác định giá trị lượng giác của góc đặc biệt. Dạng 2: Chứng minh đẳng thức lượng giác, chứng minh biểu thức không phụ thuộc x, đơn giản biểu thức. Dạng 3: Xác định giá trị của một biểu thức lượng giác có điều kiện. BÀI 2. TÍCH VÔ HƯỚNG CỦA HAI VECTƠ. Dạng 1: Xác định biểu thức tích vô hướng, góc giữa hai vectơ. Dạng 2: Chứng minh các đẳng thức về tích vô hướng hoặc độ dài của đoạn thẳng. Dạng 3: Tìm tập hợp điểm thoả mãn đẳng thức về tích vô hướng hoặc tích độ dài. Dạng 4: Biểu thức tọa độ của tích vô hướng. BÀI 3. CÁC HỆ THỨC LƯỢNG TRONG TAM GIÁC VÀ GIẢI TAM GIÁC. Dạng 1: Xác định các yếu tố trong tam giác. Dạng 2: Giải tam giác. Dạng 3: Chứng minh đẳng thức, bất đẳng thức liên quan đến các yếu tố của tam giác, tứ giác. Dạng 4: Nhận dạng tam giác. CHƯƠNG 3 . PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG. BÀI 1. PHƯƠNG TRÌNH ĐƯỜNG THẲNG. Dạng 1: Viết phương trình tổng quát của đường thẳng. Dạng 2: Xét vị trí tương đối của hai đường thẳng. Dạng 3: Viết phương trình tham số và chính tắc của đường thẳng. Dạng 4: Xác định tọa độ điểm thuộc đường thẳng. Dạng 5: Bài toán liên quan đến khoảng cách từ một điểm tới một đường thẳng. Dạng 6: Bài toán liên quan đến góc giữa hai đường thẳng. BÀI 2. PHƯƠNG TRÌNH ĐƯỜNG TRÒN. Dạng 1: Nhận dạng phương trình đường tròn. Tìm tâm và bán kính đường tròn. Dạng 2: Viết phương trình đường tròn. Dạng 3: Vị trí tương đối của điểm; đường thẳng; đường tròn với đường tròn. Dạng 4: Viết phương trình tiếp tuyến với đường tròn. BÀI 3. PHƯƠNG TRÌNH ELIP. Dạng 1: Xác định các yếu tố của elip khi biết phương trình chính tắc của elip. Dạng 2: Viết phương trình chính tắc của đường elip. Dạng 3: Xác định điểm nằm trên đường elip thỏa mãn điều kiện cho trước.