Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các bài toán chứng minh đẳng thức hình học

Với bài toán hình học trong đề thi tuyển sinh vào lớp 10 môn Toán, sẽ có những yêu cầu chứng minh hai đoạn thẳng bằng nhau hoặc các đoạn thẳng tỷ lệ … mà ta gọi chung là đẳng thức hình học. Tài liệu dưới đây sẽ hệ thống một số biện pháp chứng minh đẳng thức hình học. Dạng toán đẳng thức hình học là một dạng toán cũng không khó nhưng nó đòi hỏi người giải phải có cái nhìn nhanh (tiết kiệm thời gian) và chuẩn (giải đúng kiếm điểm), xác định đúng phương pháp vô cùng quan trọng. Chính vì vậy việc tự luyện giải nhiều bài toán hình học sẽ giúp cho các em có kỹ năng giải. PHẦN 1 . LÝ THUYẾT CHỨNG MINH ĐẲNG THỨC HÌNH HỌC. A. CHỨNG MINH HAI ĐOẠN THẲNG BẰNG NHAU. Phương pháp 1: Hai tam giác bằng nhau. Phương pháp 2: Sử dụng tính chất của các hình đặc biệt. 1. Hai cạnh bên của tam giác cân, tam giác đều. 2. Sử dụng tính chất về cạnh và đường chéo của các tứ giác đặc biệt: hình thang cân, hình bình hành, hình chữ nhật, hình vuông, hình thoi. Phương pháp 3: Sử dụng tính chất của các đường đặc biệt, điểm đặc biệt. 1. Sử dụng tính chất đường trung tuyến (đường thẳng đi qua trọng tâm tam giác), đường trung tuyến của tam giác vuông, đường trung bình trong tam giác, các đường đồng quy trong tam giác đặc biệt. 2. Điểm nằm trên tia phân giác của một góc thì cách đều hai cạnh của góc đó. 3. Khoảng cách từ một điểm trên đường trung trực của một đoạn thẳng đến hai đầu đoạn thẳng. 4. Sử dụng tính chất trung điểm. 5. Hình chiếu của hai đường xiên bằng nhau và ngược lại. Phương pháp 4: Sử dụng các tính chất liên quan đến đường tròn. 1. Sử dụng tính chất hai dây cách đều tâm trong đường tròn. 2. Sử dụng tính chất hai tiếp tuyến giao nhau trong đường tròn. 3. Sử dụng quan hệ giữa cung và dây cung trong một đường tròn. Phương pháp 5: Sử dụng tỉ số, đoạn thẳng trung gian. 1. Dùng tính chất bắc cầu: Hai đoạn thẳng cùng bằng đoạn thẳng thứ ba. 2. Có cùng độ dài (cùng số đo) hoặc cùng nghiệm đúng một hệ thức. 3. Đường thẳng song song cách đều. 4. Sử dụng tính chất của các đẳng thức, hai phân số bằng nhau. 5. Sử dụng kiến thức về diện tích. 6. Sử dụng bình phương của chúng bằng nhau (có thể sử dụng định lí Pitago, tam giác đồng dạng, hệ thức lượng trong tam giác, trong đường tròn để đưa về bình phương của chúng bằng nhau). B. CHỨNG MINH HAI ĐOẠN THẲNG TỈ LỆ. 1. Tính chất trung điểm của đoạn thẳng. 2. Tính chất ba đường trung tuyến trong tam giác. 3. Đường trung bình. 4. Định lý Talet. 5. Tính chất đường phân giác của tam giác. 6. Các trường hợp đồng dạng của tam giác. 7. Hệ thức lượng trong tam giác vuông. 8. Tỉ số lượng giác của góc nhọn. PHẦN 2 . BÀI TẬP CHỨNG MINH ĐẲNG THỨC HÌNH HỌC PHẲNG.

Nguồn: toanmath.com

Đọc Sách

Các bài toán chứng minh đẳng thức hình học
Nội dung Các bài toán chứng minh đẳng thức hình học Bản PDF - Nội dung bài viết Các bài toán chứng minh đẳng thức hình học: "Với bài toán hình học trong" Các bài toán chứng minh đẳng thức hình học: "Với bài toán hình học trong" Trên thực tế, các bài toán chứng minh đẳng thức hình học đóng vai trò quan trọng trong việc giải quyết các vấn đề liên quan đến hình học. Các bài toán này thường yêu cầu sử dụng kiến thức và kỹ năng về các định lý hình học để chứng minh tính đúng đắn của một đẳng thức nào đó. Đối với bài toán hình học trong, việc phân tích và giải quyết chúng đòi hỏi sự tập trung, logic, và khả năng suy luận tốt. Thông qua việc chứng minh đẳng thức hình học, chúng ta có thể hiểu rõ hơn về cấu trúc và tính chất của các hình học, từ đó giúp chúng ta áp dụng kiến thức này vào các vấn đề thực tế khác. Với sự phức tạp và đa dạng của các bài toán hình học trong, việc rèn luyện và nâng cao kỹ năng giải quyết chúng sẽ giúp chúng ta trở thành những người giỏi về hình học, cũng như phát triển khả năng tư duy logic và sáng tạo trong quá trình giải quyết vấn đề.
Phương pháp giải phương trình nghiệm nguyên
Nội dung Phương pháp giải phương trình nghiệm nguyên Bản PDF - Nội dung bài viết Phương pháp giải phương trình nghiệm nguyên Phương pháp giải phương trình nghiệm nguyên Tài liệu này bao gồm 38 trang, hướng dẫn một số phương pháp giải phương trình nghiệm nguyên. Đây là loại bài toán thường xuyên xuất hiện trong các đề thi học sinh giỏi Toán cấp THCS. A. Kiến thức cần nhớ: 1. Phương trình nghiệm nguyên là phương trình có nhiều ẩn số, với tất cả các hệ số đều là số nguyên và các nghiệm cần tìm cũng là số nguyên. 2. Phương trình nghiệm nguyên không có công thức giải tổng quát, chỉ có cách giải cụ thể cho từng dạng bài toán. Trong tài liệu này, chúng tôi giới thiệu qua một số ví dụ và bài tập cụ thể. 3. Cách giải phương trình nghiệm nguyên là rất đa dạng, đòi hỏi học sinh phải phân tích, dự đoán, đối chiếu và tư duy sáng tạo, logic để tìm ra nghiệm. B. Các dạng bài tập: - Dạng 1: Phương pháp đưa về phương trình ước số. - Dạng 2: Phương pháp sử dụng tính chất chia hết. - Dạng 3: Phương pháp xét số dư từng vế. - Dạng 4: Phương pháp đưa về dạng tổng. - Dạng 5: Phương pháp sử dụng bất đẳng thức. - Dạng 6: Phương pháp đánh giá. - Dạng 7: Phương pháp giải lùi vô hạn, nguyên tắc cực hạn. C. Bài tập tự luyện: Để nắm vững phương pháp giải phương trình nghiệm nguyên, học sinh nên thực hành nhiều bài tập tự luyện để rèn luyện kỹ năng và cải thiện hiệu suất giải toán.
Bài toán chứng minh đẳng thức, bất đẳng thức hình học phẳng
Nội dung Bài toán chứng minh đẳng thức, bất đẳng thức hình học phẳng Bản PDF - Nội dung bài viết Bài toán chứng minh đẳng thức, bất đẳng thức hình học phẳng Bài toán chứng minh đẳng thức, bất đẳng thức hình học phẳng Tài liệu này bao gồm 139 trang, được lựa chọn và hướng dẫn cách giải các bài toán liên quan đến việc chứng minh đẳng thức, bất đẳng thức trong hình học phẳng. Đây là công cụ hữu ích giúp học sinh hiểu rõ chương trình Toán lớp 9 và ôn tập cho kỳ thi vào lớp 10 môn Toán. Cụ thể, tài liệu này bao gồm các bài toán khác nhau từ lớp 1 đến lớp 9. Các bài toán được chia thành từng cấp độ, từ những vấn đề đơn giản như sử dụng định lí Pythagore, tam giác bằng nhau, đến những bài toán phức tạp hơn như sử dụng quan hệ góc, cạnh đối diện, và bất đẳng thức tam giác. Bên cạnh đó, tài liệu cũng giới thiệu các phương pháp giải bài toán hình học bằng cách sử dụng diện tích, hình bình hành, tam giác đồng dạng và các hệ thức quen thuộc như định lí Thales, đường phân giác trong tam giác. Với những bài toán và cách giải đa dạng như vậy, tài liệu này sẽ giúp học sinh nắm vững kiến thức và kỹ năng cần thiết để giải quyết các vấn đề liên quan đến đẳng thức, bất đẳng thức hình học phẳng.
Bí quyết giải toán số học THCS theo chủ đề
Nội dung Bí quyết giải toán số học THCS theo chủ đề Bản PDF - Nội dung bài viết Bí quyết giải toán số học THCS Bí quyết giải toán số học THCS Tài liệu Bí quyết giải toán số học THCS được biên soạn bởi tác giả: Huỳnh Kim Linh và Nguyễn Quốc Bảo, gồm 525 trang. Tài liệu này trình bày những bí quyết giải toán số học THCS theo chủ đề, chú trọng vào một dạng toán thường gặp trong các đề thi chọn học sinh giỏi Toán từ lớp 6 đến lớp 9. Tài liệu này sẽ giúp bạn hiểu rõ hơn về cách giải các dạng toán số học THCS, từ đơn giản đến phức tạp, giúp bạn tự tin hơn khi tham gia các kỳ thi Toán. Bên cạnh đó, việc biên soạn bởi các tác giả có kinh nghiệm trong giảng dạy môn Toán sẽ giúp bạn nắm vững kiến thức và kỹ năng cần thiết để thành công trong việc giải các bài toán số học THCS.