Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giữa kì 2 Toán 9 năm 2022 - 2023 trường THCS Lê Tấn Bê - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2022 – 2023 trường THCS Lê Tấn Bê, quận Bình Tân, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào ngày 23 tháng 03 năm 2023. Trích dẫn Đề giữa kì 2 Toán 9 năm 2022 – 2023 trường THCS Lê Tấn Bê – TP HCM : + Trong tháng 3, tổng số tiền điện và tiền nước sinh hoạt của gia đình bạn An là 1 075 000 đồng. Trong tháng 4, tiền điện tăng 12% còn tiền nước tăng 10% nên tổng số tiền điện và tiền nước sinh hoạt của gia đình An tăng thêm 126 600 đồng so với tháng 3. Em hãy tính xem gia đình An đã trả bao nhiêu tiền điện và bao nhiêu tiền nước trong tháng 3? + Một mảnh đất hình chữ nhật có chu vi là 90m. Nếu giảm chiều dài 3m và chiều rộng 5m thì diện tích giảm 170m2. Tính diện tích mảnh đất đó. + Một cái bánh kem có đáy hình tròn, có chu vi là 42 cm. a/ Tính bán kính đáy của bánh kem? b/ Tính diện tích bề mặt đáy của bánh kem? (Làm tròn đến chữ số thập phân thứ nhất). Biết công thức tính chu vi đường tròn là C = 2piR và diện tích đường tròn là S = piR2.

Nguồn: toanmath.com

Đọc Sách

Đề thi giữa kì 2 Toán 9 năm 2020 - 2021 phòng GDĐT Hà Đông - Hà Nội
Thứ Tư ngày 31 tháng 03 năm 2021, phòng Giáo dục và Đào tạo quận Hà Đông, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng giữa kì 2 môn Toán lớp 9 năm học 2020 – 2021. Đề thi giữa kì 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Hà Đông – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 04 bài toán, thời gian làm bài 60 phút.
Đề thi giữa HK2 Toán 9 năm 2020 - 2021 trường THCS Hoàng Hoa Thám - Hà Nội
Đề thi giữa HK2 Toán 9 năm 2020 – 2021 trường THCS Hoàng Hoa Thám – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút.
Đề thi giữa kì 2 Toán 9 năm 2020 - 2021 trường Lương Thế Vinh - Hà Nội
Đề thi giữa kì 2 Toán 9 năm học 2020 – 2021 trường THCS & THPT Lương Thế Vinh, thành phố Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi giữa kì 2 Toán 9 năm 2020 – 2021 trường Lương Thế Vinh – Hà Nội : + Hai bạn An và Tâm được phân công chuẩn bị tài liệu cho buổi thuyết trình trước lớp về ý nghĩa của “Giờ trái đất”. Biết rằng nếu hai bạn cùng làm thì sau 2 giờ 24 phút sẽ xong. Nhưng khi làm chung được 1 giờ thì Tâm có việc bận phải về, còn một mình An làm nốt trong 2 giờ 20 phút nữa mới xong. Hỏi nếu mỗi bạn làm một mình thì sau bao lâu sẽ xong công việc? + Cho các đường thẳng (d): y = -2x + 3; (d’): y = (m – 1)x + 2m – 1 và parabol (P): y = x2. a) Tìm tọa độ giao điểm của (d) và (P). b) Tìm m biết đường thẳng (d’) song song với đường thẳng (d). Khi đó, giả sử (d’) cắt Ox tại A, cắt Oy tại B. Tính diện tích tam giác OAB. c) Tìm m để (d’) cắt (P) tại 2 điểm phân biệt D, E sao cho trung điểm I của DE nằm trên Oy. + Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn. Kẻ tiếp tuyến AB với (O) (B là tiếp điểm); đường thẳng d đi qua A và cắt (O) tại C, D (C nằm giữa A và D). Gọi I là trung điểm của CD. a) Chứng minh các điểm A, B, I và O cùng nằm trên một đường tròn. b) Chứng minh AC.AD = AB2. c) Qua B kẻ đường thẳng vuông góc với OA, đường thẳng này cắt (O;R) tại E. Chứng minh AB là tiếp tuyến của (O;R) và góc BEA = 1/2 góc BIE. d) Khi đường thẳng d thay đổi sao cho BDE có ba góc nhọn, gọi H là trực tâm BDE. Tính OA theo R để H chạy trên đường tròn ngoại tiếp ABE.
Đề thi giữa kì 2 Toán 9 năm 2020 - 2021 trường THCS Đống Đa - Hà Nội
Đề thi giữa kì 2 Toán 9 năm học 2020 – 2021 trường THCS Đống Đa, quận Đống Đa, thành phố Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi giữa kì 2 Toán 9 năm 2020 – 2021 trường THCS Đống Đa – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Tổng số học sinh của hai lớp 9A và 9B là 93 học sinh. Trong đợt quyên góp sách và ủng hộ các bạn học sinh vùng lũ, trung bình mỗi học sinh lớp 9A ủng hộ 3 quyển, mỗi học sinh lớp 9B ủng hộ 2 quyển nên cả hai lớp ủng hộ được 234 quyển sách vở. Tính số học sinh mỗi lớp 9A và 9B. + Giải hệ phương trình sau + Cho parabol (P) và đường thẳng (d). a) Vẽ parabol (P) và đường thẳng (d) trên cùng một hệ trục tọa độ. b) Tìm tọa độ giao điểm của đường thẳng (d) và parabol (P).