Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn học sinh giỏi lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Bắc Ninh

Nội dung Đề chọn học sinh giỏi lớp 8 môn Toán năm 2020 2021 phòng GD ĐT Bắc Ninh Bản PDF - Nội dung bài viết Đề chọn học sinh giỏi Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Bắc Ninh Đề chọn học sinh giỏi Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Bắc Ninh Ngày 11 tháng 01 năm 2021, phòng Giáo dục và Đào tạo thành phố Bắc Ninh, tỉnh Bắc Ninh đã tổ chức kì thi chọn học sinh giỏi (HSG) cấp thành phố môn Toán lớp 8 năm học 2020 - 2021. Đề chọn học sinh giỏi Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Bắc Ninh bao gồm 1 trang với 5 bài toán dạng tự luận. Thời gian làm bài thi là 150 phút. Trích dẫn đề chọn học sinh giỏi Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Bắc Ninh: Tìm dư trong phép chia đa thức f(x) cho x + 1 và x^2 + 1. Tìm các số nguyên x, y thỏa mãn phương trình 5x + 53 = 2xy + 8y^2. Chứng minh một số tính chất của hình vuông ABCD và tam giác BKC. Trên đây là phần đề chọn học sinh giỏi Toán lớp 8 năm 2020 - 2021 phòng GD&ĐT Bắc Ninh. Các bài toán yêu cầu sự tư duy logic, khả năng giải quyết vấn đề và kiến thức sâu rộng về môn Toán. Hãy thử sức và nỗ lực để vượt qua thách thức này!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 8 năm 2021 - 2022 phòng GDĐT Đông Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Đông Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào thứ Tư ngày 09 tháng 03 năm 2022. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2021 – 2022 phòng GD&ĐT Đông Sơn – Thanh Hóa : + Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE = AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại hai điểm M, N. a) Chứng minh rằng tứ giác AEMD là hình chữ nhật b) Biết diện tích tam giác BCH gấp bốn lần diện tich tam giác AEH.Chứng minh rằng AC = 2EF. c) Chứng minh rằng AD AM AN. + Tìm nghiệm tự nhiên của phương trình. + Chứng minh rằng với mọi số nguyên x, y thì A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4 là số chính phương.
Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Triệu Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm định chất lượng học sinh giỏi môn Toán 8 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 11 tháng 03 năm 2022. Trích dẫn đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Triệu Sơn – Thanh Hóa : + Tìm nghiệm nguyên của phương trình: x2 + 2xy + 2x + 2y – 3y2 = 4. + Cho số tự nhiên n > 2 và số nguyên tố p thỏa mãn p – 1chia hết cho n đồng thời n3 – 1 chia hết cho p. Chứng minh rằng n + p là một số chính phương. + Cho tam giác ABC vuông tại A. Các tia phân giác của góc B và góc C cắt nhau tại I. Gọi D; E; F lần lượt là hình chiếu vuông góc của I lên BC; AB; AC. 1. Chứng minh: Tứ giác AEIF là hình vuông và ID = IE = IF. 2. Tia AI cắt DF tại K. a) Chứng minh rằng tam giác AIB đồng dạng tam giác AFK. b) Qua A kẻ đường thẳng vuông góc với BC, đường thẳng này cắt DF tại P. Gọi M là trung điểm của AB. Tia MI cắt cạnh AC tại Q. Chứng minh tam giác APQ cân. 3. Khi BC cố định, điểm A di chuyển nhưng vẫn thỏa mãn góc BAC = 90° và đoạn AI không đổi bằng a2. Tìm vị trí của A để chu vi tam giác AMQ nhỏ nhất.
Đề chọn học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Hải Hậu - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chọn học sinh giỏi môn Toán lớp 8 năm học 2021 – 2022 phòng GD&ĐT Hải Hậu, tỉnh Nam Định.
Đề học sinh giỏi Toán 8 năm 2021 - 2022 phòng GDĐT Nam Trực - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi Toán 8 năm 2021 – 2022 phòng GD&ĐT Nam Trực – Nam Định.