Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

10 đề khảo sát chất lượng học sinh giỏi lớp 8 môn Toán (nội dung học kì 1 (HK1))

Nội dung 10 đề khảo sát chất lượng học sinh giỏi lớp 8 môn Toán (nội dung học kì 1 (HK1)) Bản PDF - Nội dung bài viết Tuyển tập 10 đề khảo sát chất lượng học sinh giỏi lớp 8 môn Toán (HK1) Tuyển tập 10 đề khảo sát chất lượng học sinh giỏi lớp 8 môn Toán (HK1) Tài liệu này gồm 10 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), dành cho học sinh giỏi lớp 8. Các đề được tạo ra để kiểm tra kiến thức và kỹ năng của học sinh trong học kỳ 1. Nội dung của sách tập trung vào việc giúp học sinh rèn luyện và nâng cao kiến thức Toán của mình. Các đề khảo sát được biên soạn theo cấu trúc đề thi chọn HSG Toán lớp 8 của sở Giáo dục và Đào tạo tỉnh Thái Bình, giúp học sinh quen với định dạng và cấu trúc của đề thi chính thức. Ví dụ về một số câu hỏi trong tài liệu bao gồm: Chứng minh rằng tam giác BMD là tam giác vuông tại M. Chứng minh rằng đường thẳng AN song song với đường thẳng BC. Chứng minh rằng trong 5 số nguyên dương, luôn tồn tại số chia hết cho 5 hoặc tổng của một số số có thể chia hết cho 5. Bằng cách tham gia giải các đề khảo sát trong tài liệu, học sinh sẽ có cơ hội củng cố kiến thức Toán, rèn luyện kỹ năng giải quyết vấn đề và phát triển khả năng tư duy logic của mình.

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG cấp huyện lớp 8 môn Toán năm 2012 2013 phòng GD ĐT Việt Yên Bắc Giang
Nội dung Đề thi HSG cấp huyện lớp 8 môn Toán năm 2012 2013 phòng GD ĐT Việt Yên Bắc Giang Bản PDF - Nội dung bài viết Đề thi HSG cấp huyện Toán lớp 8 năm 2012 - 2013 phòng GD&ĐT Việt Yên Bắc Giang Đề thi HSG cấp huyện Toán lớp 8 năm 2012 - 2013 phòng GD&ĐT Việt Yên Bắc Giang Xin gửi đến quý thầy cô và các em học sinh lớp 8 đề thi HSG cấp huyện môn Toán năm 2012 - 2013 từ phòng GD&ĐT Việt Yên, Bắc Giang. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Một số câu hỏi từ đề thi: 1. Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE = AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại hai điểm M, N. Chứng minh rằng tứ giác AEMD là hình chữ nhật. 2. Biết diện tích tam giác BCH gấp bốn lần diện tích tam giác AEH. Chứng minh rằng: AC = 2EF. 3. Chứng minh rằng: 1/AD^2 = 1/AM^2 + 1/AN^2. 4. Tìm đa thức f(x) biết rằng: f(x) chia cho x - 2 dư 10, f(x) chia cho x - 2 dư 24, f(x) chia cho x^2 - 4 được thương là -5x và còn dư. 5. Phân tích đa thức x^4 + 2013x^2 + 2012x + 2013 thành nhân tử.