Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lớp 9 môn Toán cuối năm 2021 2022 phòng GD ĐT thành phố Vinh Nghệ An

Nội dung Đề KSCL lớp 9 môn Toán cuối năm 2021 2022 phòng GD ĐT thành phố Vinh Nghệ An Bản PDF - Nội dung bài viết Bộ đề khảo sát chất lượng môn Toán lớp 9 cuối năm 2021-2022Phần 1: Phương trình và hệ phương trìnhPhần 2: Giải bài toán bằng phương trìnhPhần 3: Hình học Bộ đề khảo sát chất lượng môn Toán lớp 9 cuối năm 2021-2022 Chào mừng quý thầy cô và các em học sinh lớp 9! Dưới đây là bộ đề khảo sát chất lượng môn Toán lớp 9 cuối năm học 2021-2022 của phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An. Phần 1: Phương trình và hệ phương trình 1. Cho phương trình: \(x^2 - 4x + m + 5 = 0\) a) Tìm giá trị tham số m để phương trình có nghiệm. b) Tìm giá trị tham số m để phương trình có hai nghiệm dương thỏa mãn Phần 2: Giải bài toán bằng phương trình 2. Để chuẩn bị cho SEA Games 31, Ban tổ chức cần 3000 tình nguyện viên đáp ứng trình độ tiếng Anh B1. Nếu yêu cầu tăng lên B2, số lượng TNV nam giảm 20%, nữ giảm 10% và tổng số TNV chỉ còn 2580 người. Hỏi đã tuyển chọn được bao nhiêu TNV nam và nữ theo tiêu chuẩn ban đầu? Phần 3: Hình học 3. Từ điểm A bên ngoài đường tròn (O) với hai tiếp tuyến AB, AC và cát tuyến AEF. Gọi I là giao điểm của AO và BC, K là trung điểm của EF a) Chứng minh tứ giác ABOC nội tiếp. b) Tính độ dài cung tròn BEC khi OB = 3cm và BOC = 120. c) Chứng minh rằng đường thẳng đi qua K song song với BF cắt BC tại M thì KMC = KEC. d) Chứng minh N là trung điểm của AB khi tia FM cắt AB tại N. Hy vọng bộ đề sẽ giúp các em ôn tập và chuẩn bị tốt cho kì thi sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề rà soát Toán 9 năm 2022 - 2023 trường THCS Tản Hồng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề rà soát chất lượng học sinh môn Toán 9 năm học 2022 – 2023 trường THCS Tản Hồng, huyện Ba Vì, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 27 tháng 05 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề rà soát Toán 9 năm 2022 – 2023 trường THCS Tản Hồng – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một ca nô chuyển động xuôi dòng từ A đến B sau đó ngược dòng từ B về A hết tổng cộng 5 giờ. Biết quãng đường sông từ A đến B dài 60 km và vận tốc của dòng nước là 5km/h. Tính vận tốc thực của ca nô (Vận tốc thực của ca nô khi nước đứng yên). + Một quả bóng tennis có đường kính 6,5 cm. Tính diện tích nguyên liệu cần dùng để làm mặt xung quanh của quả bóng (làm tròn đến chữ số thập phân thứ 2, giả thiết rằng nguyên liệu làm các mối nối là không đáng kể và lấy π ≈ 3,14). + Cho tam giác ABC nhọn nội tiếp đường tròn (O), các đường cao AD, BE, CF cắt nhau tại H. Kẻ đường kính AQ của đường tròn (O) cắt cạnh BC tại I. 1) Chứng minh bốn điểm A, F, H, E cùng thuộc một đường tròn. 2) Chứng minh: BAD CAQ. 3) Gọi P là giao điểm của AH và EF. Chứng minh ∆AEP đồng dạng với ABI và PI HQ.
Đề khảo sát Toán 9 năm 2022 - 2023 trường THCS Dịch Vọng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 trường THCS Dịch Vọng, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 29 tháng 05 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 năm 2022 – 2023 trường THCS Dịch Vọng – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Quãng đường AB dài 180km. Một xe máy khởi hành từ A đến B với vận tốc không đổi. Sau đó 24 phút một ô tô cũng khởi hành từ A nhưng đi với vận tốc lớn hơn vận tốc xe máy là 5km/h nên đã đến B kịp lúc với xe máy. Tính vận tốc của xe máy. + Cột cờ Hà Nội là công trình lịch sử đặc biệt, không chỉ là biểu tượng của Thủ đô thân yêu mà còn là chứng tích cho một thời kháng chiến chống Pháp oanh liệt, dấu ấn kiên cường, bất khuất của các thế hệ con dân đất Hà thành. Vào thời điểm các tia nắng mặt trời tạo với mặt đất một góc 620, bóng của Cột cờ trên mặt đất. + Cho ∆ABC (AC > BC) có ba góc nhọn nội tiếp đường tròn (O). Vẽ các tiếp tuyến với (O) tại A và B, hai tiếp tuyến này cắt nhau tại M. Lấy H là hình chiếu của O trên MC. 1) Chứng minh bốn điểm M, A, O, H cùng thuộc một đường tròn. 2) Chứng minh HM là phân giác của AHB. 3) a) Qua C kẻ đường thẳng song song với AB cắt MA, MB lần lượt tại E và F, nối EH cắt AC tại P. Chứng minh PA.PC = PH.PE.
Đề khảo sát Toán 9 lần 4 năm 2022 - 2023 phòng GDĐT Bình Xuyên - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 lần 4 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Bình Xuyên, tỉnh Vĩnh Phúc; đề thi hình thức 20% trắc nghiệm + 80% tự luận, thời gian làm bài 120 phút, không kể thời gian giao đề; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 lần 4 năm 2022 – 2023 phòng GD&ĐT Bình Xuyên – Vĩnh Phúc : + Trong các câu sau, mỗi câu chỉ có một lựa chọn đúng. Em hãy ghi vào bài làm chữ cái in hoa đứng trước lựa chọn đúng (Ví dụ: Câu 1 nếu chọn A là đúng thì viết 1.A). Biểu thức 2024 2023 P x có nghĩa khi và chỉ khi? + Một công nhân được giao làm 64 sản phẩm trong một thời gian quy định. Nhưng thực tế, người đó lại được giao làm thêm 6 sản phẩm nữa. Do đó mỗi ngày người công nhân đã làm vượt mức 2 sản phẩm và hoàn thành sớm hơn dự định 1 ngày. Hỏi theo kế hoạch mỗi ngày người công nhân làm được bao nhiêu sản phẩm? + Từ điểm A ở ngoài đường tròn (O), kẻ hai tiếp tiếp AB, AC tới đường tròn (B, C là các tiếp điểm). Đường thẳng đi qua A cắt đường tròn (O) tại hai điểm D và E (D nằm giữa A và E, tia AE nằm giữa AB và AO). Gọi H là trung điểm của DE, AE cắt BC tại I. Chứng minh rằng: a) Tứ giác ABOC nội tiếp đường tròn. b) HA là phân giác của góc BHC. c) 2 1 1 AI AD AE.
Đề khảo sát Toán 9 tháng 5 năm 2023 trường THCS Nghĩa Tân - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 tháng 5 năm 2023 trường THCS Nghĩa Tân, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 25 tháng 05 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 tháng 5 năm 2023 trường THCS Nghĩa Tân – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một ca nô xuôi dòng sông từ A đến B dài 48km. Khi đến B, ca nô nghỉ 30 phút sau đó lại ngược dòng từ B về đến A. Tổng thời gian kể từ lúc ca nô đi từ A đến khi ca nô quay trở về A là 4 giờ 6 phút. Tìm vận tốc riêng của ca nô, biết vận tốc dòng nước là 3km/h. + Một thùng tôn hình trụ có bán kính đáy 0,3m và chiều cao 0,7m đang chứa đầy nước. Tính thể tích nước trong thùng (Lấy pi = 3,14 và bỏ qua bề dày của vật liệu). + Cho đường tròn (O; R) có hai đường kính AB và CD vuông góc tại O. Gọi I là trung điểm của OB. Tia CI cắt đường tròn (O) tại E. Gọi H là giao điểm của AE và CD. 1) Chứng minh: Tứ giác OIED nội tiếp. 2) Chứng minh: 2 AH AE R 2 và OA = 3.OH. 3) Gọi K là hình chiếu của O trên BD, Q là giao điểm của AD và BE. Chứng minh: Q, K, I thẳng hàng.