Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài toán min - max số phức có lời giải chi tiết - Lương Văn Huy

Tài liệu gồm 53 trang được biên soạn bởi thầy Lương Văn Huy tuyển tập bài toán min – max số phức có lời giải chi tiết, các bài toán được trích dẫn từ các đề thi thử môn Toán THPT Quốc gia. Tài liệu phù hợp với đối tượng học sinh khá, giỏi muốn ôn tập chinh phục điểm 8 – 9 – 10 trong kỳ thi THPT Quốc gia môn Toán. Một số tính chất cần nhớ 1. Môđun của số phức 2. Một số quỹ tích nên nhớ [ads] Một số dạng đặc biệt cần lưu ý + Dạng 1: Quỹ tích điểm biểu diễn số phức là đường thẳng + Dạng 2: Quỹ tích điểm biểu diễn số phức là đường tròn + Dạng 3: Quỹ tích điểm biểu diễn số phức là Elip

Nguồn: toanmath.com

Đọc Sách

Phương pháp chuẩn hóa trong số phức - Phạm Minh Tuấn
Tài liệu gồm 6 trang giới thiệu kỹ thuật chuẩn hóa giải nhanh bài toán số phức thông qua 14 bài tập có lời giải chi tiết, phương pháp này giúp ta giải quyết nhanh một lớp bài toán số phức khó. Trích dẫn tài liệu : + Cho hai số phức z, w khác 0 và thỏa mãn |z – w| = 2.|z| = |w|. Gọi a, b lần lượt là phần thực và phần ảo của số phức u = z/w. Tính a^2 + b^2? + Cho số phức z = a + bi ≠ 0 sao cho z không phải là số thực và w = z/(1 + z^3) là số thực. Tính |z|^2/(1 + |z|^2) + Cho hai số phức z, w khác 0 và thỏa mãn |z – w| = 5.|z| = |w|. Gọi a, b lần lượt là phần thực và phần ảo của số phức u = z.w. Tính a^2 + b^2? [ads]
Kỹ thuật CHỌN trong trắc nghiệm tích phân và số phức - Trần Lê Quyền
Một nguyên tắc cơ bản khi xây dựng nên các bài toán đại số chính là: Thiết lập sự cân bằng giữa số ẩn số và số phương trình lập nên từ các dữ kiện. Lấy ý tưởng đó, bài viết này tổng hợp và giới thiệu vài cách xử lí nhanh một số bài toán số phức và tích phân bằng một kiểu chọn đặc biệt. Tôi cố tình không phân chia ra các đề mục để tách biệt giữa số phức và tích phân vì xét dưới góc nhìn này, chúng hoàn toàn giống nhau! [ads]
Hướng dẫn sử dụng máy tính cầm tay giải nhanh bài toán số phức - Trần Bá Hưng
Tài liệu gồm 40 trang hướng dẫn sử dụng máy tính cầm tay Casio và Vinacal để giải nhanh các bài toán số phức trong các đề thi thử THPT Quốc gia môn Toán. Các thủ thuật Casio được trình bày trong tài liệu được sử dụng để giải nhanh các dạng toán số phức sau: + Tính nhanh các phép toán cơ bản số phức + Biểu diễn hình học của số phức + Quỹ tích điểm biểu diễn của số phức + Cực trị của số phức + Phương trình số phức [ads]
Kỹ thuật tạo số phức liên hợp giải nhanh bài toán số phức vận dụng cao - Nguyễn Minh Tuấn
Tài liệu gồm 6 trang được biên soạn bởi tác giả Nguyễn Minh Tuấn hướng dẫn giải nhanh bài toán số phức vận dụng cao bằng kỹ thuật tạo số phức liên hợp kèm theo bài tập áp dụng. Nội dung tài liệu được chia thành 2 phần: + Phần 1. 9 ví dụ hướng dẫn kỹ thuật tạo số phức liên hợp để giải nhanh các bài toán số phức ở mức độ vận dụng cao (khó). + Phần 2. 51 bài tập vận dụng. Các bài toán được liệt kê trong tài liệu đều ở mức vận dụng cao, rất cao. Thông qua kỹ thuật nhỏ trên, tác giả Nguyễn Minh Tuấn hy vọng các em sẽ vận dụng linh hoạt các công thức biến đổi của số phức để tìm ra lời giải một cách ngắn gọn nhất. [ads] Trích dẫn tài liệu kỹ thuật tạo số phức liên hợp giải nhanh bài toán số phức vận dụng cao – Nguyễn Minh Tuấn: + Cho ba số phức a,b, c thỏa mãn a + b + c = 0 và |a| = |b| = |c| = 1. Đặt w = a^2 + b^2 + c^2. Hỏi khẳng định nào sau đây là đúng? A. w là số thực không âm. B. w = 0. C. w là số thuần ảo. D. w là số thực dương. + Cho số phức z tùy ý, xét hai số phức α = z^2 + z‾, β = z.z‾ + i(z − z‾). Khẳng định nào sau đây là đúng ? A. α là số thực, β là số thuần ảo. B. α là số thuần ảo, β là số thực. C. Cả hai số đều là số thực. D. Cả hai số đều là số thuần ảo. + Cho hai số phức z1, z2 thỏa mãn |z1| = |z2| = 1 và z1.z2 ≠ 1. Tìm phần ảo của số phức w = (z1 + z2)/(1+ z1z2)? A. Phần ảo bằng 1. B. Phần ảo bằng -1. C. Phần ảo bằng 0. D. Phần ảo lớn hơn.