Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối kỳ 1 Toán 9 năm 2023 - 2024 trường THCS Trương Văn Ngư - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 1 môn Toán 9 năm học 2023 – 2024 trường THCS Trương Văn Ngư, thành phố Thủ Đức, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào ngày 19 tháng 12 năm 2023. Trích dẫn Đề cuối kỳ 1 Toán 9 năm 2023 – 2024 trường THCS Trương Văn Ngư – TP HCM : + Trên một khúc sông, dòng chảy của nước ở bề mặt sông lớn hơn dòng chảy của nước ở đáy sông. Các nhà khoa học đã tìm được mối liên hệ giữa vận tốc dòng chảy ở bề mặt sông và vận tốc dòng chảy ở đáy sông theo công thức. Trong đó: v (km/h) là vận tốc dòng chảy ở bề mặt sông, f (km/h) là vận tốc dòng chảy ở đáy sông. Nếu vận tốc dòng chảy ở bề mặt sông là 16 km/h thì vận tốc dòng chảy ở đáy sông là bao nhiêu? (làm tròn kết quả đến hàng đơn vị). + Bác An mua 1 robot hút bụi, lau nhà và 2 nồi cơm điện (có cùng giá bán) tại một siêu thị điện máy nên phải trả tổng cộng số tiền là 12 900 000 đồng. Biết rằng siêu thị đang có chương trình khuyến mãi giảm giá như sau: 1 robot hút bụi, lau nhà giảm 15% trên giá niêm yết và 1 nồi cơm điện giảm 10% trên giá niêm yết. Biết giá niêm yết của 1 robot hút bụi, lau nhà tại siêu thị điện máy là 12 000 000 đồng. a) Tính giá bán sau khi giảm giá của 1 robot hút bụi, lau nhà mà bác An đã mua. b) Tính giá niêm yết trước khi giảm giá của 1 nồi cơm điện mà bác An đã mua. + Một người đứng trên thuyền tại vị trí C quan sát một ngọn hải đăng cao 60 m với góc nâng lên là 25° đang hướng di chuyển về phía ngọn hải đăng. Lần thứ hai khi thuyền tại vị trí D người đó nhìn thấy ngọn hải đăng với góc nâng lên là 30°. Hỏi con thuyền đã đi được bao nhiêu mét giữa hai lần quan sát (kết quả làm tròn đến chữ số thập phân thứ nhất) (Học sinh phải vẽ lại hình vào bài làm).

Nguồn: toanmath.com

Đọc Sách

Đề thi cuối kỳ 1 Toán 9 năm 2020 - 2021 phòng GDĐT Quận 1 - TP HCM
Thứ Ba ngày 22 tháng 12 năm 2020, phòng Giáo dục và Đào tạo Quận 1, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 9 giai đoạn cuối học kỳ 1 năm học 2020 – 2021. Đề thi cuối kỳ 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Quận 1 – TP HCM gồm 02 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút.
Đề thi cuối học kỳ 1 Toán 9 năm 2020 - 2021 phòng GDĐT Quận 4 - TP HCM
Đề thi cuối học kỳ 1 Toán 9 năm học 2020 – 2021 phòng Giáo dục và Đào tạo Quận 4, thành phố Hồ Chí Minh gồm 02 trang với 07 bài toán dạng tự luận, thời gian làm bài 90 phút (không kể thời gian phát đề). Trích dẫn đề thi cuối học kỳ 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Quận 4 – TP HCM : + Từ đài quan sát được đặt trên đỉnh của một tòa nhà (điểm A) nhìn xuống hai điểm B và C ở hai bên bờ sông được mô tả như hình vẽ. Biết chiều cao của tòa nhà là AH = 461 mét, khi nhìn xuống hai điểm B và C thì góc HAB và góc HAC có số đo lần lượt là 42 độ và 55°. Hãy tính khoảng cách hai điểm B và C hai bên bờ sông (làm tròn kết quả đến mét). + Sau buổi lễ chào mừng “Ngày nhà giáo Việt Nam 20/11” lớp 9A cùng nhau đi ăn kem ở một quán gần trường. Nhân dịp quán mới khai trương nên có khuyến mãi, bắt đầu từ ly thứ 5 giá mỗi ly kem giảm 4 000 đồng so với giá ban đầu. Lớp 9A mua 40 ly kem, khi tính tiền chủ cửa hàng thấy lớp mua nhiều nên giảm thêm 5% số tiền trên hóa đơn vì vậy số tiền lớp 9A chỉ phải trả là 471 200 đồng. a. Tính số tiền chủ cửa hàng đã giảm thêm 5% trên hóa đơn cho lớp 9A. b. Hỏi giá của một ly kem ban đầu là bao nhiêu? + Hai trường A, B có 250 học sinh lớp 9 dự thi vào lớp 10, kết quả có 210 học sinh đã trúng tuyển. Tính riêng tỉ lệ thì trường A trúng tuyển vào lớp 10 đạt 80%, trường B trúng tuyển vào lớp 10 đạt 90%. Hỏi mỗi trường có bao nhiêu học sinh lớp 9 dự thi vào lớp 10.
Đề thi học kì 1 Toán 9 năm 2020 - 2021 phòng GDĐT Tây Hồ - Hà Nội
Thứ Ba ngày 22 tháng 12 năm 2020, phòng Giáo dục và Đào tạo quận Tây Hồ, thành phố Hà Nội tổ chức kỳ thi kiểm tra học kì 1 môn Toán lớp 9 năm học 2020 – 2021. Đề thi học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Tây Hồ – Hà Nội được biên soạn theo dạng đề tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 90 phút (không kể thời gian phát đề). Trích dẫn đề thi học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Tây Hồ – Hà Nội : + Một người đứng trên ngọn hải đăng cao 100 mét quan sát hai lần một con thuyền đang đi về phía ngọn hải đăng. Lần thứ nhất người đó nhìn thấy thuyền với góc hạ là 20 độ, lần thứ hai người đó nhìn thấy thuyền với góc hạ là 30 độ. Hỏi con thuyền đã đi được bao nhiêu mét giữa hai lần quan sát? (làm tròn đến mét). + Cho đường tròn (O;R), đường kính AB. Qua điểm A và điểm B lần lượt vẽ đường thẳng d và d ‘ là hai tiếp tuyến của đường tròn. Lấy điểm M bất kì thuộc đường tròn (O) (M khác A và B). Qua M kẻ tiếp tuyến với đường tròn (O) cắt d và d ‘ theo thứ tự tại C và D. a) Chứng minh bốn điểm A, C, M, O thuộc một đường tròn. b) Chứng minh tam giác OCD vuông và 4.AC.BD = AB^2. c) Chứng minh AB là tiếp tuyến của đường tròn ngoại tiếp tam giác COD. + Cho các số thực dương x, y thỏa mãn xy > 2020x + 2021y. Chứng minh rằng: x + y > (√2020 + √2021)^2.
Đề thi học kì 1 Toán 9 năm 2020 - 2021 trường THPT chuyên Hà Nội - Amsterdam
Đề thi học kì 1 Toán 9 năm 2020 – 2021 trường THPT chuyên Hà Nội – Amsterdam gồm 01 trang với 04 bài toán tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi học kì 1 Toán 9 năm 2020 – 2021 trường THPT chuyên Hà Nội – Amsterdam : + Cho nửa đường tròn tâm O với bán kính R, đường kính AB. Trên nửa mặt phẳng bờ là đường thẳng AB chứa nửa đường tròn, kẻ tia tiếp tuyến Ax tại A của nửa đường tròn. Xét điểm M thay đổi trên da, không trùng với A. Gọi E là điểm đối xứng với A qua OM. a) Chứng minh rằng ME là một tiếp tuyến của nửa đường tròn (O). b) Đoạn OM cắt nửa đường tròn (O) tại I. Chứng minh rằng I là tâm đường tròn nội tiếp của tam giác AME. c) Gọi N là trung điểm EB. Tia ME cắt ON tại P. Hãy xác định vị trí của điểm M trên tia Ax để diện tích tam giác OMP đạt giá trị nhỏ nhất. Tính giá trị nhỏ nhất đó theo R. d) Gọi C là giao điểm của BE và tia Ox, OC cắt AE tại Q. Kẻ đường thẳng qua Q và song song với Ax, cắt OM tại D. Chứng minh rằng A, D, P thẳng hàng. + Giải phương trình: x2 – 1 = 2√(2x + 1). + Cho a, b là các số thực dương thỏa mãn a – √a = √b – b. Tìm giá trị nhỏ nhất của biểu thức: P = a2 + b2 + 2020/(√a + √b)^2.