Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Khánh Hòa

Thứ Năm ngày 03 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Khánh Hòa tổ chức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2021 – 2022. Đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Khánh Hòa gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Khánh Hòa : + Theo kế hoạch, Công an tỉnh Khánh Hòa sẽ cấp 7200 thẻ Căn cước công dân cho địa phương A. Một tổ công tác được điều động đến địa phương A để cấp thẻ Căn cước công dân trong một thời gian nhất định. Khi thực hiện nhiệm vụ, tổ công tác đã cải tiến kĩ thuật nên mỗi ngày đã cấp tăng thêm được 40 thẻ Căn cước so với kế hoạch. Vì vậy, tổ công tác đã hoàn thành nhiệm vụ sớm hơn kế hoạch 2 ngày. Hỏi theo kế hoạch ban đầu, mỗi ngày tổ công tác sẽ cấp được bao nhiêu thẻ Căn cước? + Cho tam giác ABC có ba góc nhọn, nội tiếp trong đường tròn O R và hai đường cao BE CF cắt nhau tại H. a) Chứng minh BCEF là tứ giác nội tiếp đường tròn. b) Chưng minh OA EF. c) Hai đường thẳng BE, CF lần lượt cắt đường tròn (O) tại điểm thứ hai là N và P. Đường thẳng AH cắt đường tròn (O) tại điểm thứ hai là M và cắt BC tại D. Tính giá trị biểu thức AM BN CP AD BE CF. + Trên mặt phẳng tọa độ, cho parabol 2 P y x và đường thẳng 2 2 2 d y x m m (m là tham số). a) Biết A là một điểm thuộc P và có hoành độ 2 A x. Xác định tọa độ điểm A. b) Tìm tất cả các giá trị của m để d cắt P tại hai điểm phân biệt. c) Xác định tất cả các giá trị của m để d cắt P tại hai điểm phân biệt có hoành độ lần lượt là 1 x và 2 x thỏa mãn điều kiện 2 1 2 x x m 2 3.

Nguồn: toanmath.com

Đọc Sách

Đề thi vào lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (môn chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Lai Châu; kỳ thi được diễn ra vào ngày 27 tháng 05 năm 2023. Trích dẫn Đề thi vào lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Lai Châu : + Tìm các giá trị của tham số m để đường thẳng (d): y = -x + m + 1 cắt parabol (P): y = x2 tại hai điểm phân biệt có hoành độ x1, x2 thỏa mãn điều kiện x12 – x2 – 4m + 1 = 0. + Cho tam giác ABC vuông tại A. Trên cạnh AC lấy điểm F, vẽ FE vuông góc với BC tại E. Gọi (O) là đường tròn ngoại tiếp tam giác CEF. Đường thẳng BF cắt (O) tại điểm thứ hai là D, DE cắt AC tại H. a) Chứng minh ABEF là tứ giác nội tiếp. b) Chứng minh FH.CA = CH.FA. c) Đường thẳng AD cắt (O) tại điểm thứ hai là G, FG cắt CD tại I, CG cắt FD tại K. Chứng minh K, I, H thẳng hàng. + Cho hình vuông ABCD và 2025 đường thẳng, biết mỗi đường thẳng đều thỏa hai mãn điều kiện: i) luôn cắt hai cạnh đối diện và không đi qua đỉnh nào của hình vuông. ii) chia hình vuông thành hai phần có tỉ số diện tích bằng 1/2. Chứng minh rằng trong 2025 đường thẳng đó có ít nhất 507 đường thẳng cùng đi qua một điểm.
Đề thi thử Toán vào lớp 10 năm 2023 - 2024 trường THCS Trung Đô - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THCS Trung Đô, thành phố Vinh, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 – 2024 trường THCS Trung Đô – Nghệ An : + Kết thúc năm học 2022 – 2023 học sinh hai lớp 9A và 9B của một trường THCS tặng lại thư viện trường 494 quyển sách gồm hai loại sách giáo khoa và sách tham khảo. Trong đó, mỗi học sinh lớp 9A tặng 4 quyển sách giáo khoa và 1 quyển sách tham khảo, mỗi học sinh lớp 9B tặng 5 quyển sách giáo khoa và 2 quyển sách tham khảo. Biết số sách giáo khoa nhiều hơn số sách tham khảo là 246 quyển. Tính số học sinh của mỗi lớp? + Bác Nam muốn đúc một cống nước hình trụ, không có đáy, cao 1,1m; thành cống dày 8cm và đường kính vành ngoài của cống là 1,2m. Thể tích bê tông cần dùng để đúc cống là bao nhiêu 3 m? (Bỏ qua hao phí, làm tròn kết quả đến hai chữ số ở phần thập phân và lấy π = 3,14). + Cho đường tròn (O) đường kính AB = 2R. Lấy điểm I thuộc đoạn thẳng AB sao cho IA < IB, kẻ dây MN vuông góc với đường kính AB tại I. Trên đoạn MI lấy điểm E (E khác M, I). Tia AE cắt đường tròn tại điểm thứ hai là K. a. Chứng minh tứ giác IEKB nội tiếp. b. Chứng minh (AE.AK + BI.BA) không phụ thuộc vào vị trí điểm I. c. Xác định vị trí của điểm I sao cho chu vi tam giác MIO đạt giá trị lớn nhất?
Đề thi vào 10 môn Toán (chuyên) năm 2023 - 2024 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (dùng cho thí sinh thi vào lớp chuyên Toán) năm học 2023 – 2024 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 27 tháng 05 năm 2023. Trích dẫn Đề thi vào 10 môn Toán (chuyên) năm 2023 – 2024 trường chuyên Lam Sơn – Thanh Hóa : + Xác định số nguyên dương n lớn nhất sao cho với mọi số nguyên tố p > 7 thì p6 − 1 chia hết cho n. + Cho tam giác nhọn ABC (AB < AC) có các đường cao AD, BE, CF đồng quy tại điểm H. Gọi K là trung điểm của đoạn thẳng AH. 1. Chứng minh tứ giác DEKF nội tiếp đường tròn, gọi đường tròn đó là (S). 2. Gọi P, Q lần lượt là trung điểm của các đoạn thẳng EF, BC. Chứng minh AD là tiếp tuyến của đường tròn ngoại tiếp tam giác HPQ. 3. Gọi M, N lần lượt là giao điểm của (S) với các đoạn thẳng BH, CH. Tiếp tuyến tại D của đường tròn (S) cắt MN tại T. Gọi X, Y là các giao điểm của đường tròn (S) với đường tròn ngoại tiếp tam giác BHC. Chứng minh các điểm T, X, Y thẳng hàng. + Cho tập hợp X = {1; 2; …; 120} gồm 120 số nguyên dương đầu tiên, trong đó có 60 số được viết bằng màu đỏ và 60 số còn lại được viết bằng màu xanh. Chứng minh rằng tồn tại 40 số nguyên dương liên tiếp của tập X, trong đó có 20 số được viết bằng màu đỏ và 20 số được viết bằng màu xanh.
Đề thi vào 10 chuyên môn Toán (chung - XH) năm 2023 - 2024 sở GDĐT Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (đề chung – dành cho học sinh thi vào các lớp chuyên xã hội) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nam Định.