Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG lớp 10 môn Toán năm 2018 2019 trường THPT Thị xã Quảng Trị

Nội dung Đề thi chọn HSG lớp 10 môn Toán năm 2018 2019 trường THPT Thị xã Quảng Trị Bản PDF - Nội dung bài viết Đề thi chọn HSG lớp 10 môn Toán năm 2018-2019 trường THPT Thị xã Quảng Trị Đề thi chọn HSG lớp 10 môn Toán năm 2018-2019 trường THPT Thị xã Quảng Trị Ngày 03 tháng 04 năm 2019, trường THPT Thị xã Quảng Trị đã tổ chức kỳ thi năm học sinh giỏi văn hóa môn Toán lớp 10 năm học 2018 - 2019. Đề thi đã được biên soạn để chọn ra những em học sinh xuất sắc nhất, những em này sẽ được đưa vào đội tuyển học sinh giỏi Toán lớp 10 của trường và được bồi dưỡng, tuyên dương và khen thưởng nhằm nâng cao chất lượng học tập. Đề thi chọn HSG Toán lớp 10 năm 2018 - 2019 trường THPT Thị xã Quảng Trị là một bài thi tự luận, gồm 4 bài toán trên 1 trang giấy. Bài thi có tổng điểm là 20 và thời gian làm bài là 180 phút. Đề thi cũng có lời giải chi tiết, giúp học sinh hiểu rõ vấn đề và cách giải. Một trong các câu hỏi trong đề thi là: Trong mặt phẳng tọa độ Oxy, cho hình thang cân ABCD có hai đáy là AD, BC và AD > BC. Biết AB = BC, AD = 7. Đường chéo AC có phương trình là x - 3y - 3 = 0, điểm M(-2;-5) thuộc đường thẳng AD. Tìm tọa độ đỉnh D biết đỉnh B(1;1). Cho tam giác ABC đều có độ dài cạnh bằng 3. Trên các cạnh BC, CA lần lượt lấy các điểm N, M, sao cho BN = 1, CM = 2. a) Phân tích véc tơ AN theo hai vectơ AB, AC. b) Trên cạnh AB lấy điểm P (P khác A, P khác B) sao cho AN vuông góc với PM. Tính tỉ số AP/AB. Cho Parabol (P): y = x^2 + bx + c. 1) Tìm b, c để Parabol (P) có đỉnh S(-1/2;-5/4). 2) Với b, c tìm được ở câu 1. Tìm m để đường thẳng Δ: y = -2x - m cắt Parabol (P) tại hai điểm phân biệt A, B sao cho tam giác OAB vuông tại O (với O là gốc tọa độ). Đây là một trong những câu hỏi trong đề thi chọn HSG Toán lớp 10 năm 2018 - 2019 trường THPT Thị xã Quảng Trị. Những học sinh giỏi và năng động sẽ được chọn vào đội tuyển học sinh giỏi của trường để được bồi dưỡng và phát triển. Chúc các em học sinh thành công trong kỳ thi!

Nguồn: sytu.vn

Đọc Sách

Đề Olympic Toán 10 năm 2019 cụm THPT Thanh Xuân Cầu Giấy Thường Tín - Hà Nội
Đề Olympic Toán 10 năm 2019 cụm THPT Thanh Xuân & Cầu Giấy & Thường Tín – Hà Nội nhằm giao lưu đội tuyển học sinh giỏi môn Toán khối 10 của ba trường: trường THPT Thanh Xuân (Hà Nội), trường THPT Cầu Giấy (Hà Nội), trường THPT Thường Tín (Hà Nội), đề thi được biên soạn theo dạng tự luận với 05 bài toán, học sinh làm bài trong 120 phút (không kể thời gian giám thị coi thi phát đề), lời giải chi tiết của đề thi được biên soạn bởi tập thể quý thầy, cô giáo nhóm Diễn Đàn Giáo Viên Toán. Trích dẫn đề Olympic Toán 10 năm 2019 cụm THPT Thanh Xuân & Cầu Giấy & Thường Tín – Hà Nội : + Trong mặt phẳng tọa độ Oxy cho hình chữ nhật ABCD. Gọi H là hình chiếu của A lên BD; I là trung điểm của BH. Biết đỉnh A(2;1), phương trình đường chéo BD là: x + 5y – 19 = 0, điểm I(42/13;41/13). a) Viết phương trình tham số đường thẳng AH. Tìm tọa độ điểm H? b) Viết phương trình tổng quát cạnh AD. [ads] + Cho tam giác ABC, đặt a = BC, b = AC, c = AB. Gọi M là điểm tùy ý. a) Tìm giá trị nhỏ nhất của biểu thức P = MA^2 + MB^2 + MC^2 theo a, b, c. b) Giả sử a = √6 cm, b = 2 cm, c = (1 + √3) cm. Tính số đo góc nhỏ nhất của tam giác ABC và diện tích tam giác ABC. + Cho hàm số y = x^2 – 2x + 2. a) Lập bảng biến thiên và vẽ đồ thị (P) của hàm số. b) Tìm m để phương trình -x^2 + 2x – 2 – m = 0 có hai nghiệm x1 và x2 thỏa mãn: x1 < -1 < 3 < x2.
Đề khảo sát đội tuyển HSG Toán 10 lần 1 năm học 2017 - 2018 trường THPT Thanh Miện - Hải Dương
Đề khảo sát đội tuyển HSG Toán 10 lần 1 năm học 2017 – 2018 trường THPT Thanh Miện – Hải Dương gồm 5 bài toán tự luận,thời gian làm bài 180 phút, đề thi HSG có lời giải chi tiết . Trích dẫn đề thi : + Trong mặt phẳng tọa độ Oxy, cho hình bình hành ABCD, điểm M (-2; 0) là trung điểm của cạnh AB, điểm H(1; -1) là hình chiếu của B trên AD và điểm G(7/3; 3) là trọng tâm tam giác BCD. Đường thẳng HM cắt BC tại E, đường thẳng HG cắt BC tại F. Tìm tọa độ các điểm E, F và B. [ads] + Cho tam giác ABC có trọng tâm là G. Hai điểm D và E được xác định bởi các hệ thức vectơ vtAD = 2.vtAB; vtAE = 2/5.vtAC. Chứng minh rằng: D, E, G thẳng hàng. + Gọi H là trực tâm tam giác ABC, M là trung điểm của BC. Chứng minh rằng vtMH.vtMA = 1/4.BC^2.