Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các chủ đề ôn thi tuyển sinh vào lớp 10 môn Toán

Tài liệu gồm 88 trang, tuyển tập các chủ đề ôn thi tuyển sinh vào lớp 10 môn Toán; tài liệu được biên soạn dựa theo cấu trúc đề tuyển sinh lớp 10 THPT môn Toán của sở Giáo dục và Đào tạo thành phố Hồ Chí Minh. MỤC LỤC : Bài 1. Căn bậc hai, căn bậc ba 4. + Dạng 1.1: Tính giá trị biểu thức 4. + Dạng 1.2: Rút gọn biểu thức và tính giá trị 4. Bài 2. Bài toán hàm số bậc nhất – bậc hai 6. + Dạng 2.1: Giải bài toán tương giao giữa (P), (D) bằng phép toán và đồ thị 6. + Dạng 2.2: Bài toán tương giao giữa (P) và (D) có chứa tham số 9. Bài 3. Phương trình bậc 2 – Định lý Vi-et 9. + Dạng 3.1: Tính giá trị biểu thức bằng định lí vi-et 9. + Dạng 3.2: Giải phương trình bậc 2 chứa tham số bằng công thức Vi-et 11. Bài 4. Bài toán thực tế – suy luận 14. + Dạng 4.1: Bài toán CAN-CHI 14. + Dạng 4.2: Bài toán xác định năm nhuận DƯƠNG, nhuận ÂM 15. + Dạng 4.3: Bài toán xác định thứ, ngày, tháng trong năm 16. + Dạng 4.4: Bài toán xác định múi giờ trái đất 17. + Dạng 4.5: Bài toán thi đấu thể thao 18. + Dạng 4.6: Bài toán xác định chỉ số sinh học của con người 18. + Dạng 4.7: Bài toán về mua bán, kinh doanh sản phẩm tiêu dùng 19. + Dạng 4.8: Các bài toán tính phần tử trong tập hợp 20. + Dạng 4.9: Các dạng toán suy luận 21. Bài 5. Bài toán thực tế – ứng dụng hàm số 22. + Dạng 5.1: Bài toán cho sẵn hàm số bậc nhất 22. + Dạng 5.2: Tìm hệ số a, b trong hàm số bậc nhất mô tả các đại lượng bài toán 23. + Dạng 5.3: Lập hàm số mô tả các đại lượng trong bài toán thực tế 28. + Dạng 5.4: Cho sẵn hàm số mô tả đại lượng bài toán, tìm y biết x 31. Bài 6. Bài toán thực tế – Tỉ lệ phần trăm 33. + Dạng 6.1: Bài toán lời lỗ trong kinh doanh, giảm và tăng sản phẩm 33. + Dạng 6.2: Bài toán kinh doanh có tính thuế sản phẩm 34. + Dạng 6.3: Bài toán kinh doanh khuyến mãi sản phẩm 35. + Dạng 6.4: Bài toán tính lương, thu nhập của công nhân 36. + Dạng 6.5: Bài toán lãi suất ngân hàng 37. + Dạng 6.6: Bài toán tỉ lệ học sinh 38. + Dạng 6.7: Bài toán về dân số 38. + Dạng 6.8: Bài toán tính trung bình, tính phần trăm hợp chất 39. Bài 7. Giải toán bằng cách lập phương trình 41. + Dạng 7.1: Lập hệ phương trình bậc nhất một ẩn 41. + Dạng 7.2: Lập phương trình bậc hai, một ẩn 42. Bài 8. Giải toán đố bằng cách lập hệ phương trình 43. + Dạng 8.1: Lập hệ phương trình hai ẩn bậc nhất 43. + Dạng 8.2: Lập hệ phương trình hai ẩn giải bằng phương pháp đặc biệt 45. + Dạng 8.3: Lập hệ phương trình ba ẩn bậc nhất 46. Bài 9. Bài toán thực tế – hình học phẳng 49. + Dạng 9.1: Sử dụng tỉ số lượng trong tam giác vuông 49. + Dạng 9.2: Sử dụng hệ thức lượng trong tam giác vuông 52. + Dạng 9.3: Sử dụng công thức tính chu vi, diện tích đa giác, hình tròn 53. Bài 10. Bài toán thực tế – hình học không gian 55. + Dạng 10.1: Tính diện tích, thể tích khối chop, khối lăng trụ 55. + Dạng 10.2: Tính diện tích, thể tích khối tròn xoay(nón trụ cầu) 57. + Dạng 10.3: Bài toán liên quan khối chóp, khối lăng trụ và khối tròn xoay 64. Bài 11. Hình học phẳng – Đường tròn 67. + Dạng 11.1: Từ một đểm nằm ngoài đường tròn, kẻ 2 tiếp tuyến 67. + Dạng 11.2: Đường tròn có đường kính cho trước 78. Bài 12. Đề toán tuyển sinh 10 qua các năm 81.

Nguồn: toanmath.com

Đọc Sách

270 bài toán giải và biện luận phương trình bậc hai một ẩn - Lương Tuấn Đức
Tài liệu gồm 107 trang tuyển tập 270 bài toán giải và biện luận phương trình bậc hai một ẩn do thầy Lương Tuấn Đức biên soạn, nhằm phục vụ kỳ thi tuyển sinh lớp 10 THPT, lớp 10 hệ THPT chuyên. Nội dung chính gồm: + Giải phương trình bậc hai bằng hằng đẳng thức + Giải phương trình bậc hai bằng công thức nghiệm + Giải phương trình bậc hai bằng công thức nghiệm thu gọn + Giải và biện luận hệ phương trình bậc hai chứa tham số + Câu hỏi phụ bài toán giải và biện luận + Định lý Vi-et thuận – định lý Vi-et đảo + Bài toán nhiều cách giải
101 bài toán Parabol và các vấn đề liên quan - Lương Tuấn Đức
Trong phạm vi hàm số và đồ thị, tài liệu này tác giả tập trung trình bày một lớp các bài toán khảo sát sự biến thiên, vẽ đồ thị hàm số bậc hai đơn giản (tức là dạng parabol có đỉnh là gốc tọa độ O) hay còn gọi là đồ thị hàm số y = ax^2, vấn đề vị trí tương đối giữa parabol và đường thẳng, một số bài toán gắn kết yếu tố lượng giác, hình học giải tích. Như đã nói ở trên, mục đích khoa học chính của tài liệu nhằm phục vụ cho quá trình dạy và học, kiểm tra, kỳ thi tuyển sinh lớp 10 THPT, sau nữa làm nền tảng cho tư duy hàm số, tư duy hình học giải tích ở cấp THPT mai sau, ngoài ra còn mang tính mở rộng, đào sâu, hướng đến mong muốn bạn đọc nghiên cứu đầy đủ về đường thẳng, tăng cường sự sáng tạo, đột phá, phát huy hơn nữa trong toán học và các ứng dụng trong hàng loạt các môn khoa học tự nhiên. [ads] Nội dung tài liệu : + Sự biến thiên của hàm số bậc hai + Vẽ đồ thị hàm số bậc hai đơn giản (parabola đơn giản) + Biện luận vị trí tương đối giữa đường thẳng và parabola + Một số bài toán gắn kết yếu tố hình học + Bài toán nhiều cách giải
123 bài toán hàm số bậc nhất và đường thẳng - Lương Tuấn Đức
Trong khuôn khổ Toán học sơ cấp nói chung và Đại số phổ thông nói riêng, Hàm số và Đồ thị là dạng toán cơ bản nhưng thú vị, có phạm vi trải rộng, phong phú, liên hệ chặt chẽ với nhiều bộ phận khác của toán học sơ cấp cũng như toán học hiện đại. Tại Việt Nam, nội dung hàm số và đồ thị là một bộ phận hữu cơ, quan trọng, được phổ biến giảng dạy chính thức trong chương trình sách giáo khoa Toán bước đầu là lớp 7, tiếp sau là các lớp 9, 10, 11, 12 song song với các khối lượng kiến thức liên quan. Các kỹ năng đối với hàm số, đồ thị được luyện tập một cách đều đặn, bài bản và hệ thống sẽ rất hữu ích, không chỉ trong bộ môn Toán mà còn phục vụ đắc lực cho các môn khoa học tự nhiên khác như Hóa học, Vật lý, Địa lý, Sinh học …. Đối với chương trình Đại số lớp 9 THCS hiện hành, hàm số và đồ thị giữ vai trò chính yếu trong Đề thi kiểm tra chất lượng học kỳ, Đề thi tuyển sinh lớp 10 THPT hệ đại trà và hệ THPT Chuyên. Đối với các lớp cao hơn, nội dung này sẽ được mở rộng trở thành kiến thức chính yếu trong chương trình Đại số – Giải tích xuyên suốt các lớp 10, 12, bao gồm hàm số bậc cao và bài toán hình học giải tích, một bài toán mang tính phân loại cao trong kỳ thi tuyển sinh đại học – cao đẳng, kỳ thi THPT Quốc gia hàng năm, một kỳ thi đầy cam go, kịch tính và bất ngờ, nó lại là một câu rất được quan tâm của các bạn học sinh, phụ huynh, các thầy cô, giới chuyên môn và đông đảo bạn đọc yêu Toán. Trong phạm vi hàm số và đồ thị, tài liệu này tác giả tập trung trình bày một lớp các bài toán khảo sát sự biến thiên, vẽ đồ thị hàm số bậc nhất (tức là dạng đường thẳng), vấn đề vị trí tương đối giữa hai đường thẳng, hoặc vị trí tương đối giữa đường thẳng và đường cong, một số bài toán gắn kết yếu tố lượng giác, hình học giải tích. Như đã nói ở trên, mục đích khoa học chính của tài liệu nhằm phục vụ cho quá trình dạy và học, kiểm tra, kỳ thi tuyển sinh lớp 9 THPT, ngoài ra tác giả đã cố gắng nâng cao, mở rộng và phát triển từng bài toán theo đúng nội dung chủ đạo hàm số bậc THPT, chủ quan cho rằng điều này sẽ góp phần giới thiệu, định hướng, phá bỏ bỡ ngỡ, tạo ra cái nhìn đa chiều đối với bài toán đồ thị và hàm số, với những nội dung như cực trị, tương giao, tiếp tuyến, giá trị lớn nhất nhỏ nhất hàm số mai sau, thiết nghĩ yếu tố này góp phần làm tiền đề tư duy hàm số, tư duy hình học giải tích ở cấp THPT trong tương lai các em học sinh THCS, ngoài ra còn mang tính mở rộng, đào sâu, hướng đến mong muốn bạn đọc nghiên cứu đầy đủ về đường thẳng, tăng cường sự sáng tạo, đột phá, phát huy hơn nữa trong toán học và các ứng dụng trong hàng loạt các môn khoa học tự nhiên. [ads] I. KIẾN THỨC CHUẨN BỊ 1. Kỹ thuật nhân, chia đơn thức, đa thức, hằng đẳng thức. 2. Nắm vững các phương pháp phân tích đa thức thành nhân tử. 3. Nắm vững các phương pháp giải, biện luận phương trình bậc nhất, bậc hai, bậc cao, phương trình chứa ẩn ở mẫu. 4. Sử dụng thành thạo các ký hiệu toán học, logic (ký hiệu hội, tuyển, kéo theo, tương đương). 5. Kiến thức nền tảng về mặt phẳng tọa độ, hàm số bậc nhất, đường thẳng. 6. Kỹ năng vẽ đồ thị hàm số. 7. Kiến thức nền tảng về hệ số góc của đường thẳng, công thức độ dài, hệ thức lượng trong tam giác vuông, công thức lượng giác, đường tròn, hàm số bậc hai parabol, phương trình nghiệm nguyên. 8. Kiến thức nền tảng về giá trị tuyệt đối, căn thức, ước lượng – đánh giá, hàm số – đồ thị, bất đẳng thức – cực trị, giá trị lớn nhất, giá trị nhỏ nhất.
Chuyên đề bất đẳng thức
Tài liệu gồm 28 trang trình bày các phương pháp chứng minh bất đẳng thức và ứng dụng của bất đẳng thức