Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các chủ đề ôn thi tuyển sinh vào lớp 10 môn Toán

Tài liệu gồm 88 trang, tuyển tập các chủ đề ôn thi tuyển sinh vào lớp 10 môn Toán; tài liệu được biên soạn dựa theo cấu trúc đề tuyển sinh lớp 10 THPT môn Toán của sở Giáo dục và Đào tạo thành phố Hồ Chí Minh. MỤC LỤC : Bài 1. Căn bậc hai, căn bậc ba 4. + Dạng 1.1: Tính giá trị biểu thức 4. + Dạng 1.2: Rút gọn biểu thức và tính giá trị 4. Bài 2. Bài toán hàm số bậc nhất – bậc hai 6. + Dạng 2.1: Giải bài toán tương giao giữa (P), (D) bằng phép toán và đồ thị 6. + Dạng 2.2: Bài toán tương giao giữa (P) và (D) có chứa tham số 9. Bài 3. Phương trình bậc 2 – Định lý Vi-et 9. + Dạng 3.1: Tính giá trị biểu thức bằng định lí vi-et 9. + Dạng 3.2: Giải phương trình bậc 2 chứa tham số bằng công thức Vi-et 11. Bài 4. Bài toán thực tế – suy luận 14. + Dạng 4.1: Bài toán CAN-CHI 14. + Dạng 4.2: Bài toán xác định năm nhuận DƯƠNG, nhuận ÂM 15. + Dạng 4.3: Bài toán xác định thứ, ngày, tháng trong năm 16. + Dạng 4.4: Bài toán xác định múi giờ trái đất 17. + Dạng 4.5: Bài toán thi đấu thể thao 18. + Dạng 4.6: Bài toán xác định chỉ số sinh học của con người 18. + Dạng 4.7: Bài toán về mua bán, kinh doanh sản phẩm tiêu dùng 19. + Dạng 4.8: Các bài toán tính phần tử trong tập hợp 20. + Dạng 4.9: Các dạng toán suy luận 21. Bài 5. Bài toán thực tế – ứng dụng hàm số 22. + Dạng 5.1: Bài toán cho sẵn hàm số bậc nhất 22. + Dạng 5.2: Tìm hệ số a, b trong hàm số bậc nhất mô tả các đại lượng bài toán 23. + Dạng 5.3: Lập hàm số mô tả các đại lượng trong bài toán thực tế 28. + Dạng 5.4: Cho sẵn hàm số mô tả đại lượng bài toán, tìm y biết x 31. Bài 6. Bài toán thực tế – Tỉ lệ phần trăm 33. + Dạng 6.1: Bài toán lời lỗ trong kinh doanh, giảm và tăng sản phẩm 33. + Dạng 6.2: Bài toán kinh doanh có tính thuế sản phẩm 34. + Dạng 6.3: Bài toán kinh doanh khuyến mãi sản phẩm 35. + Dạng 6.4: Bài toán tính lương, thu nhập của công nhân 36. + Dạng 6.5: Bài toán lãi suất ngân hàng 37. + Dạng 6.6: Bài toán tỉ lệ học sinh 38. + Dạng 6.7: Bài toán về dân số 38. + Dạng 6.8: Bài toán tính trung bình, tính phần trăm hợp chất 39. Bài 7. Giải toán bằng cách lập phương trình 41. + Dạng 7.1: Lập hệ phương trình bậc nhất một ẩn 41. + Dạng 7.2: Lập phương trình bậc hai, một ẩn 42. Bài 8. Giải toán đố bằng cách lập hệ phương trình 43. + Dạng 8.1: Lập hệ phương trình hai ẩn bậc nhất 43. + Dạng 8.2: Lập hệ phương trình hai ẩn giải bằng phương pháp đặc biệt 45. + Dạng 8.3: Lập hệ phương trình ba ẩn bậc nhất 46. Bài 9. Bài toán thực tế – hình học phẳng 49. + Dạng 9.1: Sử dụng tỉ số lượng trong tam giác vuông 49. + Dạng 9.2: Sử dụng hệ thức lượng trong tam giác vuông 52. + Dạng 9.3: Sử dụng công thức tính chu vi, diện tích đa giác, hình tròn 53. Bài 10. Bài toán thực tế – hình học không gian 55. + Dạng 10.1: Tính diện tích, thể tích khối chop, khối lăng trụ 55. + Dạng 10.2: Tính diện tích, thể tích khối tròn xoay(nón trụ cầu) 57. + Dạng 10.3: Bài toán liên quan khối chóp, khối lăng trụ và khối tròn xoay 64. Bài 11. Hình học phẳng – Đường tròn 67. + Dạng 11.1: Từ một đểm nằm ngoài đường tròn, kẻ 2 tiếp tuyến 67. + Dạng 11.2: Đường tròn có đường kính cho trước 78. Bài 12. Đề toán tuyển sinh 10 qua các năm 81.

Nguồn: toanmath.com

Đọc Sách

Ứng dụng của nguyên lý Dirichlet trong giải toán THCS
Nội dung Ứng dụng của nguyên lý Dirichlet trong giải toán THCS Bản PDF - Nội dung bài viết Ứng dụng của nguyên lý Dirichlet trong giải toán THCS Ứng dụng của nguyên lý Dirichlet trong giải toán THCS Tài liệu này là tập hợp 94 trang sách, chứa những ứng dụng cụ thể của nguyên lý Dirichlet trong việc giải các bài toán toán học cấp THCS. Nội dung tập sách bao gồm các bài toán về số học, tổ hợp, chứng minh bất đẳng thức, giúp bồi dưỡng và phát triển tư duy toán học cho học sinh giỏi. Chủ đề 1 của tài liệu tập trung vào các bài toán ứng dụng nguyên lý Dirichlet trong các lĩnh vực như tổ hợp, số học và hình học. Tài liệu cung cấp lý thuyết cơ bản về nguyên lý Dirichlet và các dạng mở rộng của nó. Cách áp dụng nguyên lý Dirichlet trong việc chứng minh kết quả toán học sâu sắc cũng được trình bày một cách dễ hiểu. Chủ đề 2 của tài liệu giới thiệu cách ứng dụng nguyên lý Dirichlet vào việc chứng minh các bất đẳng thức. Bằng cách sử dụng nguyên lý Dirichlet, chúng ta có thể chứng minh một số bài toán bất đẳng thức một cách gọn gàng và độc đáo. Một trong những mệnh đề quan trọng mà nguyên lý Dirichlet giúp chứng minh là điều kiện để tìm ra hai số cùng dấu trong 3 số thực bất kì. Tài liệu này không chỉ giúp học sinh hiểu rõ hơn về nguyên lý Dirichlet mà còn hướng dẫn cách áp dụng nó vào việc giải các bài toán thực tế, từ đó nâng cao khả năng giải quyết vấn đề của họ trong môn Toán cấp THCS.
Chuyên đề quan hệ chia hết trên tập hợp số
Nội dung Chuyên đề quan hệ chia hết trên tập hợp số Bản PDF - Nội dung bài viết Chuyên Đề Quan Hệ Chia Hết trên Tập Hợp Số Chuyên Đề Quan Hệ Chia Hết trên Tập Hợp Số Tài liệu "Chuyên đề quan hệ chia hết trên tập hợp số" gồm 56 trang được biên soạn bởi tác giả Trịnh Bình nhằm giới thiệu phương pháp giải và bài tập các dạng toán về quan hệ chia hết trên tập hợp số. Đây là tài liệu phù hợp cho học sinh lớp 6 muốn tìm hiểu sâu về chủ đề này và ôn thi học sinh giỏi môn Toán bậc Trung học Cơ sở. Trong tài liệu, các dạng toán quan trọng về quan hệ chia hết được đề cập bao gồm: Dạng Toán lớp 1: Chứng minh tích các số nguyên liên tiếp chia hết cho một số cho trước. Sử dụng tích chất cơ bản như tích hai số nguyên liên tiếp chia hết cho 2, tích của ba số nguyên liên tiếp chia hết cho 6. Dạng Toán lớp 2: Phân tích thành nhân tử để chứng minh chia hết cho một số. Sử dụng phương pháp tách tổng để chứng minh từng hạng tử chia hết cho số đó. Dạng Toán lớp 3: Sử dụng phương pháp phản chứng để chứng minh số không chia hết cho một số khác. Dạng Toán lớp 4-12: Sử dụng các phương pháp khác nhau như quy nạp, nguyên lý Dirichlet, đồng dư, định lý Fermat nhỏ để giải các bài toán quan hệ chia hết trên tập hợp số. Tài liệu này giúp học sinh nắm vững kiến thức cơ bản và phát triển kỹ năng giải toán một cách linh hoạt và logic. Qua việc thực hành các bài tập trong tài liệu, học sinh sẽ củng cố và nâng cao khả năng giải quyết vấn đề, từ đó tự tin hơn trong việc làm bài tập và thi cử.
Chuyên đề số nguyên tố
Nội dung Chuyên đề số nguyên tố Bản PDF - Nội dung bài viết Chuyên đề Số Nguyên Tố Chuyên đề Số Nguyên Tố Sytu rất hân hạnh giới thiệu đến quý Thầy, Cô giáo và các em học sinh tài liệu Chuyên đề Số Nguyên Tố do tác giả Trịnh Bình tổng hợp. Tài liệu này bao gồm 72 trang hướng dẫn cách giải các dạng toán tiêu biểu về số nguyên tố, giúp học sinh khối lớp 6 ôn tập chuẩn bị cho các kỳ thi Học Sinh Giỏi môn Toán. Nội dung tài liệu chuyên đề Số Nguyên Tố được tổ chức vào các phần sau: Phần 1: Tóm tắt lý thuyết cần nhớ 1. Định nghĩa số nguyên tố và một số định lý cơ bản về chúng. 2. Cách nhận biết và phân tích số nguyên tố. 3. Định lý Đirichlet, định lý Tchebycheff, và định lý Vinogradow. Phần 2: Các dạng toán thường gặp - Phần này tập trung vào việc giải các bài toán thực hành với các dạng toán từ lớp 1 đến lớp 9, như sử dụng phương pháp phân tích thừa số, tìm số nguyên tố thỏa mãn điều kiện, chứng minh số nguyên tố, áp dụng định lý Fermat, và nhiều vấn đề liên quan khác. Phần 3: Tuyển chọn các bài toán chia hết - Đây là phần tập hợp các bài toán quan trọng về quan hệ chia hết trong các đề thi Toán THCS. Phần 4: Hướng dẫn giải các bài toán chia hết - Cuối cùng, phần này cung cấp hướng dẫn cụ thể cho việc giải các bài toán chia hết thường gặp trong các đề thi Toán THCS. Với nội dung đa dạng, chi tiết và dễ hiểu, Chuyên đề Số Nguyên Tố sẽ là nguồn tư liệu hữu ích giúp các em học sinh nắm vững kiến thức và thành công trong học tập.
Chuyên đề phương trình đại số Trịnh Bình
Nội dung Chuyên đề phương trình đại số Trịnh Bình Bản PDF - Nội dung bài viết Chuyên đề phương trình đại số Trịnh Bình Chuyên đề phương trình đại số Trịnh Bình Tài liệu chuyên đề phương trình đại số do tác giả Trịnh Bình tổng hợp gồm 56 trang, hướng dẫn phương pháp giải các bài toán phương trình đại số. Đây là tài liệu hữu ích giúp học sinh hiểu rõ hơn về chương trình Đại số lớp 9 và ôn tập chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. CHỦ ĐỀ 1. PHƯƠNG TRÌNH ĐA THỨC BẬC CAO: Trong chuyên đề này, chúng ta sẽ tìm hiểu cách giải các phương trình đa thức bậc cao. Đối với phương trình bậc 3, chúng ta thường tìm một nghiệm đầu tiên, sau đó phân tích phương trình thành nhân tử để chuyển về giải phương trình bậc 2. Còn đối với phương trình bậc 4, chúng ta thường nhẩm một nghiệm và phân tích phương trình thành tích của đa thức bậc 3 và đa thức bậc nhất. CHỦ ĐỀ 2. PHƯƠNG TRÌNH CHỨA ẨN Ở MẪU THỨC: Trong phần này, chúng ta sẽ học cách giải các phương trình chứa ẩn trong mẫu thức. Bước đầu tiên là tìm điều kiện xác định của phương trình, sau đó quy đồng mẫu hai vế và khử mẫu để giải phương trình. CHỦ ĐỀ 3. PHƯƠNG TRÌNH CHỨA ẨN TRONG DẤU GIÁ TRỊ TUYỆT ĐỐI: Trong phần này, chúng ta sẽ tìm hiểu cách giải phương trình có chứa ẩn trong dấu giá trị tuyệt đối. Để bỏ dấu giá trị tuyệt đối, chúng ta cần xét các giá trị làm biểu thức âm hoặc không âm. Chúng ta cần hiểu rõ các phương pháp giải phương trình đại số để có thể áp dụng linh hoạt vào việc giải các bài toán. Hãy cùng học tập và rèn luyện kỹ năng giải toán một cách chính xác và hiệu quả!