Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề nguyên hàm luyện thi THPT Quốc gia 2018 - Lê Bá Bảo

Bài viết chuyên đề nguyên hàm được biên soạn bởi thầy Lê Bá Bảo gồm 43 trang nằm trong kế hoạch ôn tập luyện thi THPT Quốc gia 2018 môn Toán. Nội dung tài liệu: Nguyên hàm và các phương pháp xác định nguyên hàm I – Tổng quan lý thuyết 1. Nguyên hàm Cho hàm số f(x) xác định trên K (K là khoảng, đoạn hay nửa khoảng). Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F'(x) = f(x) với mọi x ∈ K. Tính chất của nguyên hàm: + Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì với mỗi hằng số C, hàm số G(x) = F(x) + C cũng là một nguyên hàm của f(x) trên K. + Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì mọi nguyên hàm của f(x) trên K đều có dạng F(x) + C, với C là một hằng số. 2. Tính chất của nguyên hàm 3. Sự tồn tại của nguyên hàm: Mọi hàm số f(x) liên tục trên K đều có nguyên hàm trên K. 4. Bảng nguyên hàm của một số hàm số sơ cấp [ads] II – Phương pháp tính nguyên hàm 1. Phương pháp đổi biến số: Nếu ∫f(u)du = F(u) + C và u = u(x) là hàm số có đạo hàm liên tục thì: ∫f(u(x))u'(x)dx = F(u(x)) + C 2. Phương pháp nguyên hàm từng phần: Nếu hai hàm số u = u(x) và v = v(x) có đạo hàm liên tục trên K thì: ∫u(x)v'(x)dx = u(x)v(x) – ∫u'(x)v(x)dx III – Bài tập tự luận minh họa 1. Nhóm kỹ năng 1. Một số phép biến đổi cơ bản 2. Nhóm kỹ năng 2. Nguyên hàm các hàm số phân thức 3. Nhóm kỹ năng 3. Nguyên hàm từng phần + Dạng 1. I = ∫f(x)sinxdx hoặc I = ∫f(x)cosxdx, trong đó f(x) là đa thức. Phương pháp: Đặt u = f(x) và dv = sinxdx (hoặc cosxdx). + Dạng 2. I = ∫f(x)e^xdx, trong đó f(x) là đa thức. Phương pháp: Đặt u = f(x) và dv = e^x.dx. + Dạng 3. I = ∫f(x)logxdx, trong đó f(x) là đa thức. Phương pháp: Đặt u = logx và dv = f(x)dx 4. Nhóm kỹ năng 4. Đổi biến 5. Nhóm kỹ năng 5. Dùng vi phân IV – Bài tập trắc nghiệm minh họa: Tuyển chọn các bài toán trắc nghiệm nguyên hàm có đáp án và lời giải chi tiết. V – Bài tập trắc nghiệm tự luyện

Nguồn: toanmath.com

Đọc Sách

203 bài tập nguyên hàm - tích phân và ứng dụng trong các đề thi thử THPT 2021 môn Toán
Tài liệu gồm 126 trang, được tổng hợp bởi thầy giáo Lương Anh Nhật, tuyển tập 203 bài tập nguyên hàm – tích phân và ứng dụng trong các đề thi thử THPT 2021 môn Toán, có đáp án và lời giải chi tiết. Trích dẫn tài liệu 203 bài tập nguyên hàm – tích phân và ứng dụng trong các đề thi thử THPT 2021 môn Toán: + THPT CHUYÊN LAM SƠN – THANH HÓA NĂM 2020 – 2021 LẦN 01: Cho hàm số f(x) xác định trên R, thỏa mãn f x x 2 1 và f 3 5. Giả sử phương trình f x 999 có hai nghiệm 1 x và 2 x. Tính tổng 1 2 S x x log log. + CHUYÊN QUANG TRUNG – BÌNH PHƯỚC NĂM 2020 – 2021 LẦN 02: Cho parabol 2 1P 6 y x cắt trục hoành tại hai điểm phân biệt AB và đường thẳng d y a 0 6 a. Xét parabol P2 đi qua AB và có đỉnh thuộc đường thẳng y a. Gọi 1 S là diện tích hình phẳng giới hạn bởi P1 và d; 2S là diện tích hình phẳng giới hạn bởi P2 và trục hoành (tham khảo hình vẽ). + CHUYÊN NGUYỄN DU – ĐĂKLẮK NĂM 2020 – 2021: Cho một viên gạch men có dạng hình vuông OABC như hình vẽ. Sau khi tọa độ hóa, ta có O A B C và hai đường cong lần lượt là đồ thị hàm số 3 y x và 3 y x. Tính diện tích phần tô đậm trên viên gạch men.
Toàn cảnh nguyên hàm - tích phân và ứng dụng trong đề thi THPT môn Toán (2017 - 2020)
Tài liệu gồm 22 trang, tuyển chọn 159 câu hỏi và bài tập trắc nghiệm chuyên đề nguyên hàm – tích phân và ứng dụng có đáp án, được trích từ các đề thi tốt nghiệp THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo từ năm học 2016 – 2017 đến năm học 2019 – 2020. Tài liệu giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 3 (nguyên hàm – tích phân và ứng dụng) và ôn thi tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021. Xem thêm : Đề thi THPT Quốc gia môn Toán từ năm 2017 đến năm 2020
Nguyên hàm - tích phân và ứng dụng trong các đề thi thử THPT QG môn Toán
Tài liệu gồm 393 trang được sưu tầm và biên soạn bởi thầy giáo Th.S Nguyễn Chín Em, tuyển tập các câu hỏi và bài tập trắc nghiệm chuyên đề nguyên hàm – tích phân và ứng dụng có đáp án và lời giải chi tiết trong các đề thi thử THPT Quốc gia môn Toán những năm gần đây; giúp các em học sinh khối 12 học tốt chương trình Giải tích 12 chương 3 (nguyên hàm – tích phân và ứng dụng) và ôn thi THPT Quốc gia môn Toán. Trích dẫn tài liệu nguyên hàm – tích phân và ứng dụng trong các đề thi thử THPT QG môn Toán: + Cho hai quả bóng A, B di chuyển ngược chiều nhau va chạm với nhau. Sau va chạm mỗi quả bóng nảy ngược lại một đoạn thì dừng hẳn. Biết sau khi va chạm, quả bóng A nảy ngược lại với vận tốc vA(t) = 8 − 2t (m/s) và quả bóng B nảy ngược lại với vận tốc vB(t) = 12 − 4t (m/s). Tính khoảng cách giữa hai quả bóng sau khi đã dừng hẳn (giả sử hai quả bóng đều chuyển động thẳng). + Người ta cần trồng một vườn hoa Cẩm Tú Cầu theo hình giới hạn bởi một đường Parabol và nửa đường tròn có bán kính √2 mét (phần tô trong hình vẽ). Biết rằng: để trồng mỗi m2 hoa cần ít nhất là 250000 đồng, số tiền tối thiểu để trồng xong vườn hoa Cẩm Tú Cầu gần bằng? [ads] + Cho hàm số y = f(x) liên tục trên đoạn [a; b]. Diện tích S của hình phẳng giới hạn bởi đồ thị của hàm số y = f(x), trục hoành và hai đường thẳng x = a, x = b (a < b) được tính theo công thức? + Một bình cắm hoa dạng khối tròn xoay, biết đáy bình và miệng bình có đường kính lần lượt là 2 dm và 4 dm. Mặt xung quanh của bình là một phần của mặt tròn xoay có đường sinh là đồ thị hàm số y =√(x − 1). Tính thể tích bình cắm hoa đó. + Cho hàm số y = f(x) có đồ thị f'(x) trên [−3; 2] như hình bên (phần cong của đồ thị là một phần của parabol y = ax^2 + bx + c). Biết f(−3) = 0, giá trị của f(−1) + f(1) bằng?
174 bài toán nguyên hàm, tích phân trong các đề thi thử THPTQG 2019 môn Toán
Tài liệu gồm 103 trang được biên soạn bởi thầy Nguyễn Hoàng Việt tổng hợp 174 bài toán nguyên hàm, tích phân và ứng dụng trong các đề thi thử THPTQG 2019 môn Toán, hỗ trợ học sinh trong quá trình học tập chủ đề nguyên hàm, tích phân và ứng dụng thuộc chương trình Giải tích 12 chương 3 và ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm 2019. Các bài toán nguyên hàm, tích phân và ứng dụng trong tài liệu đều ở dạng trắc nghiệm khách quan với 04 phương án lựa chọn và được phân loại thành 04 nhóm dựa vào các mức độ nhận thức: mức độ nhận biết, mức độ thông hiểu, mức độ vận dụng thấp và mức độ vận dụng cao, điều này giúp tài liệu phù hợp với đại đa số các nhóm học sinh khác nhau, và các em có thể nhanh chóng tìm kiếm các bài toán nguyên hàm, tích phân và ứng dụng phù hợp với năng lực của bản thân. Tất cả các bài toán trắc nghiệm nguyên hàm, tích phân và ứng dụng trong tài liệu đều được có đáp án và lời giải chi tiết. [ads] Trích dẫn tài liệu 174 bài toán nguyên hàm, tích phân trong các đề thi thử THPTQG 2019 môn Toán : + (Lý Thái Tổ – Bắc Ninh – KSGV – 2019) Mệnh đề nào sau đây sai? A. ∫kf(x)dx = k∫f(x)dx với mọi hằng số k và với mọi hàm số f(x) liên tục trên R. B. ∫f'(x)dx = f(x) + C với mọi hàm số f(x) có đạo hàm trên R. C. ∫[f(x) + g(x)]dx = ∫f(x)dx + ∫g(x)dx với mọi hàm số f(x), g(x) liên tục trên R. D. ∫[f(x) – g(x)]dx = ∫f(x)dx – ∫g(x)dx với mọi hàm số f(x), g(x) liên tục trên R. + (Yên Phong 1 – Bắc Ninh – KSGV – 2019) Cho hàm số f(x) xác định và liên tục trên đoạn [-5;3]. Biết rằng diện tích hình phẳng S1, S2, S3 giới hạn bởi đồ thị hàm số f(x) và đường parabol y = g(x) = ax^2 + bx + c lần lượt là m, n, p. + (Chuyên Đồng Bằng Sông Hồng – Cụm 8 trường – Lần 1 – 2019) Biết F(x) = (ax^2 + bx + c)e^-x là một nguyên hàm của hàm số f(x) = (2x^2 – 5x + 2)e^-x trên R. Giá trị của biểu thức f(F(0)) bằng?