Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Rút gọn biểu thức đại số và các bài toán liên quan

Bài toán rút gọn biểu thức đại số và các bài toán liên quan là dạng câu hỏi không thể thiếu trong các đề thi tuyển sinh vào lớp 10 môn Toán, đây là bài toán không khó, học sinh có thể làm tốt bài toán này nếu nắm vững các công thức biến đổi. Tài liệu dưới đây sẽ cung cấp cho các em phương pháp giải 12 dạng bài tập rút gọn biểu thức đại số và các bài toán có liên quan. Dạng 1 . Rút gọn biểu thức. Ngoài việc rèn kỹ năng thực hiện các phép tính trong bài toán rút gọn. Học sinh hay quên hoặc thiếu điều kiện xác định của biến x (ĐKXĐ gồm điều kiện để các căn thức bậc hai có nghĩa, các mẫu thức khác 0 và biểu thức chia (nếu có) khác 0). Dạng 2 . Tính giá trị của biểu thức A khi x = m ( với m là số hoặc biểu thức chứa x). Nếu m là biểu thức chứa căn x = m ( bằng số), trước tiên phải rút gọn; nếu m là biểu thức có dạng căn trong căn thường đưa về hằng đẳng thức để rút gọn; nếu m là biểu thức ta phải đi giải phương trình tìm x. Trước khi tính giá trị của biểu thức A, học sinh thường quên xét xem m có thỏa mãn ĐKXĐ hay không rồi mới được thay vào biểu thức đã rút gọn để tính. Dạng 3 . Tìm giá trị của biến x để A = k (với k là hằng số hoặc là biểu thức chứa x). Thực chất đây là việc giải phương trình. Học sinh thường quên khi tìm được giá trị của x không xét xem giá trị x đó có thỏa mãn ĐKXĐ của A hay không. Dạng 4 . Tìm giá trị của biến x để A ≥ k (hoặc A ≤ k, A > k, A < k …) trong đó k là hằng số hoặc là biểu thức chứa x. Thực chất đây là việc giải bất phương trình. Học sinh thường mắc sai lầm khi giải bất phương trình thường dùng tích chéo hoặc sử dụng một số phép biến đổi sai. Dạng 5 . So sánh biểu thức A với một số hoặc một biểu thức. Thực chất đây là việc đi xét hiệu của biểu thức A với một số hoặc một biểu thức rồi so sánh hiệu đó với số 0. [ads] Dạng 6 . Chứng minh biểu thức A ≥ k (hoặc A ≤ k, A > k, A < k) với k là một số. Thực chất đây là việc đưa về chứng minh đẳng thức hoặc bất đẳng thức. Ta xét hiệu A – k rồi xét dấu biểu thức. Dạng 7 . Tìm giá trị của biến x là số nguyên, số tự nhiên để biểu thức A có giá trị nguyên. Cách làm: chia tử thức cho mẫu thức, rồi tìm giá trị của biến x để mẫu thức là ước của phần dư (một số). Học sinh thường quên kết hợp với điều kiên xác định của biểu thức. Dạng 8 . Tìm giá trị của biến x là số thực, số bất kì để biểu thức A có giá trị nguyên. Học sinh thường nhầm lẫn cách làm của dạng này với dạng tìm giá trị của biến x là số nguyên, số tự nhiên để biểu thức A có giá trị nguyên. Cách làm: sử dụng ĐKXĐ để xét xem biểu thức A nằm trong khoảng giá trị nào, rồi tính giá trị của biểu thức A và từ đó tìm giá trị của biến x. Dạng 9 . Tìm giá trị của tham số để phương trình hoặc bất phương trình có nghiệm. Học sinh cần biết cách tìm điều kiện để phương trình hoặc bất phương trình có nghiệm. Dạng 10 . Tìm giá trị của biến x để A = |A| (hoặc A < |A|, A ≥ |A| …). Nếu |A| > A, suy ra A < 0. Nếu |A| = A, suy ra A ≥ 0. Dạng 11 . Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức A. Học sinh cần biết cách tìm cực trị của phân thức ở một số dạng tổng quát. Học sinh cần đưa biểu thức rút gọn A về một trong những dạng sau để tìm cực trị. Học sinh thường mắc sai lầm khi chỉ chứng minh biểu thức A ≥ k (hoặc A ≤ k) chưa chỉ ra dấu bằng nhưng đã kết luận cực trị của biểu thức A. Dạng 12 : Tìm giá trị lớn nhất, giá trị nhỏ nhất của A khi x thuộc N. Học sinh chú ý bài toán thường cho dưới dạng điều kiện xác định x ≥ a, x ≠ b, trong đó a < b. Ta phải tính giá trị với x là các số tự nhiện thuộc [a;b) và trường hợp x là số tự nhiên lớn hơn b.

Nguồn: toanmath.com

Đọc Sách

Tài liệu Toán 9 chủ đề hàm số bậc nhất
Tài liệu gồm 17 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề hàm số bậc nhất trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Khái niệm: Hàm số bậc nhất là hàm số được cho bởi công thức y = ax + b, trong đó a và b là hai số đã cho và a ≠ 0. Nếu b = 0 thì hàm số có dạng y = ax. 2. Các tính chất của hàm số bậc nhất. – Hàm số bậc nhất y = ax + b xác định với mọi giá trị của x thuộc R. – Hàm số bậc nhất: + Đồng biến trên R khi a > 0. + Nghịch biến trên R khi a < 0. B. Bài tập và các dạng toán. Dạng 1 : Nhận dạng hàm số bậc nhất. Cách giải: Hàm số bậc nhất là hàm số có dạng: y = ax + b (a ≠ 0). Dạng 2 : Xét tính đồng biến và nghịch biến của hàm số bậc nhất. Cách giải: Xét hàm số bậc nhất y = ax + b (a ≠ 0). + Đồng biến trên R khi a > 0. + Nghịch biến trên R khi a < 0. Dạng 3 : Giá trị của hàm số. Cách giải: Để tính giá trị của hàm số y = f(x) tại x = a ta thay x = a vào f(x) và viết là f(a). BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề hệ số góc của đường thẳng y ax + b (a khác 0)
Tài liệu gồm 15 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề hệ số góc của đường thẳng y = ax + b (a khác 0) trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. B. Bài tập và các dạng toán. Dạng 1 : Tìm hệ số góc của đường thẳng. Cách giải: Sử dụng các kiến thức liên quan đến vị trí tương đối giữa hai đường thẳng và hệ số góc của đường thẳng. – Hai đường thẳng song song có hệ số góc bằng nhau. – Đường thẳng y = ax + b (a > 0) tạo với tia Ox một góc α thì a = tan α. Dạng 2 : Xác định góc tạo bởi đường thẳng và tia Ox. Cách giải: Để xác định góc giữa đường thẳng (d) và tia Ox, ta làm như sau: Cách 1: Vẽ (d) trên mặt phẳng tọa độ và sử dụng tỉ số lượng giác của tam giác vuông một cách phù hợp. Cách 2: Gọi α là góc tạo bởi tia Ox và (d). Ta có: – Nếu α < 90 thì a > 0 và a = tan α. – Nếu α > 90 thì a < 0 và a = -tan (180 – α). Dạng 3 : Lập phương trình đường thẳng biết hệ số góc. Cách giải: Gọi phương trình đường thẳng cần tìm là (d): y = ax + b. Nếu (d) đi qua A(x0;y0) và biết hệ số góc thì ta thay tọa độ A(x0;y0) vào (d), từ đó tìm được b và (d). BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề nhắc lại và bổ sung các khái niệm về hàm số
Tài liệu gồm 24 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề nhắc lại và bổ sung các khái niệm về hàm số trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Khái niệm hàm số. a) Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được chỉ một giá trị tương ứng của y thì y được gọi là hàm số của x và x gọi là biến số. b) Hàm số có thể cho bằng bảng hoặc công thức. c) Khi y là hàm số của x, ta có thể viết: y f x y gx. d) Khi x thay đổi mà y luôn nhận một giá trị không đổi thì y được gọi là hàm hằng. 2. Giá trị của hàm số, điều kiện xác định của hàm số. – Giá trị của hàm số f x tại điểm 0 x kí hiệu là: y fx 0 0. – Điều kiện xác định của hàm số f x là tất cả các giá trị của x sao cho biểu thức f x có nghĩa. 3. Đồ thị của hàm số. – Đồ thị của hàm số y fx là tập hợp tất cả các điểm M xy trong mặt phẳng tọa độ Oxy sao cho x y thỏa mãn hệ thức: y fx. – Điểm Mx y 0 0 thuộc đồ thị hàm số y fx 0 0 ⇔ y fx. 4. Hàm số đồng biến, hàm số nghịch biến. Cho hàm số: y fx xác định với x R. – Nếu giá trị của x tăng lên mà giá trị y fx tương ứng cũng tăng lên thì hàm số y fx được gọi là đồng biến trên R. – Nếu giá trị của biến x tăng lên mà giá trị của y fx tương ứng giảm đi thì hàm số gọi là nghịch biến trên R. B. Bài tập và các dạng toán. Dạng 1: Tính giá trị của hàm số tại một điểm. Dạng 2: Tìm điều kiện xác định của hàm số. Dạng 3: Xét sự đồng biến và nghịch biến của hàm số. Dạng 4: Biểu diễn tọa độ của một điểm trên mặt phẳng tọa độ Oxy. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề vị trí tương đối giữa hai đường thẳng
Tài liệu gồm 22 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề vị trí tương đối giữa hai đường thẳng trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Vị trí tương đối giữa hai đường thẳng. 2. Đường thẳng đi qua điểm cố định. 3. Ba đường thẳng đồng quy. B. Bài tập và các dạng toán. Dạng 1: Xét vị trí tương đối của hai đường thẳng. Dạng 2: Xác định phương trình đường thẳng. Cách giải: Để xác định phương trình đường thẳng ta thường làm như sau: Bước 1: Gọi (d): y = ax + b là phương trình đường thẳng cần tìm (a, b là hằng số). Bước 2: Từ giả thiết của đề bài, tìm được a, b từ đó đi đến kết luận. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP TỰ LUYỆN.