Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra cuối kì 2 Toán 9 năm 2023 - 2024 sở GDĐT Đà Nẵng

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kì 2 môn Toán 9 năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Đà Nẵng; kỳ thi được diễn ra vào thứ Ba ngày 23 tháng 04 năm 2024. Trích dẫn Đề kiểm tra cuối kì 2 Toán 9 năm 2023 – 2024 sở GD&ĐT Đà Nẵng : + Một xe khách đi từ thành phố Huế đến thành phố Vinh, quãng đường dài 382 km. Sau khi xe khách xuất phát được 4 giờ, một xe tải đi từ thành phố Vinh về thành phố Huế và sau đó 1 giờ 30 phút thì gặp xe khách. Tính vận tốc của mỗi xe, biết rằng mỗi giờ xe tải đi chậm hơn xe khách 16 km. + Cho phương trình x2 – 2(m + 3)x + m2 – 3 = 0 với m là tham số. Tìm tất cả các giá trị của tham số m để phương trình đã cho có hai nghiệm phân biệt x1, x2 thỏa mãn (x1 – 2)(x2 – 2) = 1 – 3m. + Cho đường tròn (O) và điểm A nằm ngoài đường tròn đó. Qua điểm A, kẻ các tiếp tuyến AB, AC (B, C là các tiếp điểm) và cát tuyến ADE đến đường tròn (O), trong đó D nằm giữa A, E và đường thẳng AE không đi qua O. a) Chứng minh rằng tứ giác ABOC nội tiếp và BOC = 2ABC. b) Qua D kẻ đường thẳng song song với AB, cắt BC tại F. Qua F kẻ đường thẳng song song với BE, cắt AE tại H. Gọi K là giao điểm của BC và AE. Chứng minh rằng KFH đồng dạng KDC. c) Chứng minh rằng H là trung điểm của đoạn thẳng DE.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 (HK2) lớp 9 môn Toán năm học 2016 2017 sở GD và ĐT Thái Bình
Nội dung Đề thi học kì 2 (HK2) lớp 9 môn Toán năm học 2016 2017 sở GD và ĐT Thái Bình Bản PDF - Nội dung bài viết Đề thi học kì 2 (HK2) lớp 9 môn Toán năm học 2016-2017 sở GD và ĐT Thái Bình Đề thi học kì 2 (HK2) lớp 9 môn Toán năm học 2016-2017 sở GD và ĐT Thái Bình Đề thi học kì 2 môn Toán lớp 9 năm học 2016 - 2017 của sở GD và ĐT Thái Bình bao gồm 5 bài toán tự luận, mỗi bài toán đều có lời giải chi tiết. Một trong những bài toán được trích dẫn trong đề là: + Cho nửa đường tròn có đường kính BC, A là điểm thuộc nửa đường tròn sao cho AB < AC (A khác B). Trên dây cung AC lấy điểm E khác A và C; gọi D, H là hình chiếu vuông góc của A lên BC và BE. 1. Chứng minh hai góc BAD và BHD bằng nhau. 2. Chứng minh BH.CE = BC.DH. 3. Gọi K là giao điểm của DH và AC, phân giác góc CKD cắt HE, CD tại M và N; phân giác góc CBE cắt DH, CE tại P và Q. Chứng minh tam giác KPQ cân và tứ giác MPNQ là hình thoi. Đề thi này đòi hỏi kiến thức và kỹ năng phân tích, suy luận của học sinh. Bằng cách giải quyết các bài toán này, học sinh sẽ phát triển khả năng tư duy logic và sáng tạo trong việc giải quyết vấn đề. Chắc chắn rằng việc tham gia vào việc giải các bài toán trong đề thi này sẽ giúp học sinh rèn luyện kỹ năng toán học một cách hiệu quả.