Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phương trình bậc hai và ứng dụng hệ thức Vi-ét

Bài toán giải và biện luận nghiệm phương trình bậc hai cùng với ứng dụng của hệ thức Vi-ét là một trong những nội dung quan trọng bậc nhất trong chương trình Đại số lớp 9, đây là dạng toán xuất hiện trong hầu hết các đề thi tuyển sinh vào lớp 10 môn Toán. Nhằm giúp các em tìm hiểu và ôn tập dạng toán này, THCS. giới thiệu đến các em tài liệu chuyên đề phương trình bậc hai và ứng dụng hệ thức Vi-ét; tài liệu gồm có 101 trang do tác giả Trịnh Bình sưu tầm và tổng hợp. Khái quát nội dung tài liệu chuyên đề phương trình bậc hai và ứng dụng hệ thức Vi-ét: Chủ đề 1 . Phương trình bậc hai một ẩn. 1. Kiến thức cần nhớ. 2. Bài tập vận dụng. + Dạng toán 1. Giải phương trình bậc hai một ẩn. + Dạng toán 2. Tìm điều kiện để phương trình bậc hai có nghiệm. + Dạng toán 3. Nghiệm nguyên, nghiệm hữu tỷ của phương trình bậc hai. + Dạng toán 4. Tìm giá trị của m để phương trình có hai nghiệm chung. + Dạng toán 5. Chứng minh trong một hệ các phương trình bậc hai có một phương trình có nghiệm. + Dạng toán 6. Ứng dụng của phương trình bậc hai trong chứng minh bất đẳng thức và tìm GTNN và GTLN. [ads] Chủ đề 2 . Khai thác các ứng dụng của định lý Vi-ét. A. Kiến thức cần nhớ. B. Các ứng dụng của định lý Vi-ét. + Dạng toán 1: Giải phương trình bậc hai bằng cách tính nhẩm nghiệm. + Dạng toán 2: Tính giá trị biểu thức giữa các nghiệm của phương trình. + Dạng toán 3. Tìm hia số khi biết tổng và tích. + Dạng toán 4. Phân tích tam thức tam thức bậc hai thành nhân tử. + Dạng toán 5. Tìm tham số để phương trình bậc hai có một nghiệm x = x1. Tìm nghiệm thứ hai. + Dạng toán 6. Xác định tham số để phương trình có nghiệm thỏa mãn một hệ điều kiện cho trước. + Dạng toán 7. Lập phương trình bậc hai khi biết hai nghiệm của nó hoặc hai nghiệm của nó liên quan đến hai nghiệm của một phương trình đã cho. + Dạng toán 8. Tìm hệ thức liên hệ giữa hai nghiệm của phương trình bậc hai, không phụ thuộc vào tham số. + Dạng toán 9. Chứng minh hệ thức liên hệ giữa các nghiệm của phương trình bậc hai, hoặc hai nghiệm của phương trình bậc hai. + Dạng toán 10. Xét dấu các nghiệm của phương trình bậc hai, so sách các nghiệm của phương trình bậc hai với một số cho trước. + Dạng toán 11. Nghiệm chung của hai hay nhiều phương trình, hai phương trình tương đương. + Dạng toán 12. Ứng dụng của hệ thức Vi-ét các bài toán số học. + Dạng toán 13. Ứng dụng của hệ thức Vi-ét giải phương trình, hệ phương trình. + Dạng toán 14. Ứng dụng hệ thức vi-ét chứng minh đẳng thức, bất đẳng thức, tìm GTLN và GTNN. + Dạng toán 15. Vận dụng định lý Vi-ét vào các bài toán hàm số. + Dạng toán 16. Ứng dụng địng lý Vi-ét trong các bài toán hình học. Bài tập rèn luyện tổng hợp. Hướng dẫn giải. Bài tập không lời giải.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề rút gọn biểu thức chứa căn thức bậc hai
Nội dung Chuyên đề rút gọn biểu thức chứa căn thức bậc hai Bản PDF - Nội dung bài viết Chuyên đề rút gọn biểu thức chứa căn thức bậc haiKiến thức trọng tâmCác dạng bài minh họaTrắc nghiệm rèn phản xạ Chuyên đề rút gọn biểu thức chứa căn thức bậc hai Tài liệu này được biên soạn bởi tác giả Toán Học Sơ Đồ, gồm tổng cộng 44 trang. Nội dung tập trung vào kiến thức trọng tâm về cách rút gọn biểu thức chứa căn thức bậc hai, phân tích các dạng bài tập tự luận và trắc nghiệm trong chương trình Đại số lớp 9 chương 1 bài 8. Kiến thức trọng tâm Để rút gọn biểu thức chứa căn bậc hai, chúng ta thường thực hiện các bước sau đây: Bước 1: Xác định điều kiện của biểu thức. Bước 2: Phân tích mẫu thành nhân tử và kết hợp phân tích tử. Bước 3: Bỏ ngoặc và thu gọn biểu thức. Các dạng bài minh họa Trên cơ sở kiến thức trọng tâm, chúng ta có thể gặp các dạng bài toán như sau: Dạng Toán lớp 1: Rút gọn biểu thức. Dạng Toán lớp 2: Rút gọn biểu thức và tính giá trị của biểu thức khi cho giá trị của biến. Dạng Toán lớp 3: Rút gọn biểu thức và tìm x để biểu thức đạt giá trị nguyên. Dạng Toán lớp 4: Rút gọn biểu thức và tìm x để biểu thức thỏa điều kiện cho trước. Dạng Toán lớp 5: Rút gọn biểu thức và tìm x để biểu thức đạt giá trị lớn nhất hoặc nhỏ nhất. Dạng Toán lớp 6: Nâng cao phát triển tư duy toán học. Trắc nghiệm rèn phản xạ Trong tài liệu này cũng có các bài trắc nghiệm rèn luyện kỹ năng phản xạ của học sinh. Qua việc học tập và thực hành các bài tập trong tài liệu này, hy vọng học sinh sẽ nắm vững kiến thức về rút gọn biểu thức chứa căn thức bậc hai để áp dụng vào các bài toán thực tế.
Chuyên đề biến đổi đơn giản biểu thức chứa căn thức bậc hai
Nội dung Chuyên đề biến đổi đơn giản biểu thức chứa căn thức bậc hai Bản PDF - Nội dung bài viết Tài liệu chuyên đề biến đổi đơn giản biểu thức chứa căn thức bậc hai Tài liệu chuyên đề biến đổi đơn giản biểu thức chứa căn thức bậc hai Tài liệu này bao gồm 32 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ. Tài liệu tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm trong chuyên đề biến đổi đơn giản biểu thức chứa căn thức bậc hai, nhằm hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 1 bài số 6 – 7. KIẾN THỨC TRỌNG TÂM Đưa thừa số ra ngoài dấu căn. Đưa thừa số vào trong dấu căn. Khử mẫu của biểu thức lấy căn. Trục căn thức ở mẫu. Rút gọn biểu thức có chứa căn bậc hai. CÁC DẠNG TOÁN MINH HỌA DẠNG BÀI MINH HỌA Dạng Toán lớp 1: Biến đổi đơn giản biểu thức chứa căn thức bậc hai các dạng cơ bản. Dạng Toán lớp 2: Nâng cao phát triển tư duy. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ BÀI TẬP TỰ LUYỆN Tài liệu cung cấp các kiến thức cơ bản và nâng cao trong việc biến đổi biểu thức chứa căn thức bậc hai, qua các bài tập minh họa, trắc nghiệm và tự luyện. Điều này giúp học sinh hiểu rõ hơn về cách thức biến đổi và áp dụng vào bài toán thực tế.
Chuyên đề liên hệ giữa phép nhân phép chia và phép khai phương
Nội dung Chuyên đề liên hệ giữa phép nhân phép chia và phép khai phương Bản PDF - Nội dung bài viết Tài liệu tổng hợp kiến thức chuyên đề liên hệ giữa phép nhân phép chia và phép khai phương Tài liệu tổng hợp kiến thức chuyên đề liên hệ giữa phép nhân phép chia và phép khai phương Tài liệu này bao gồm 37 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, nhằm hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9, chương 1 bài số 3-4. Tác phẩm tập trung vào các kiến thức trọng tâm và cung cấp hướng dẫn chi tiết về cách giải các dạng bài tập tự luận và trắc nghiệm trong chuyên đề liên kết giữa phép nhân/phép chia và phép khai phương. Đặc điểm nổi bật của tài liệu bao gồm: - Phần Kiến thức trọng tâm: cung cấp kiến thức cần thiết cho học sinh hiểu rõ chuyên đề. - Các dạng toán: bao gồm các dạng toán từ cơ bản đến nâng cao, từ thực hiện phép tính đến giải phương trình, giúp phát triển tư duy toán học. - Trắc nghiệm rèn phản xạ: cung cấp bài tập trắc nghiệm để học sinh rèn luyện khả năng phản xạ và xử lý tình huống trong giải toán.
Chuyên đề nhắc lại và bổ sung các khái niệm về hàm số
Nội dung Chuyên đề nhắc lại và bổ sung các khái niệm về hàm số Bản PDF - Nội dung bài viết Chuyên đề hàm số trong toán học Chuyên đề hàm số trong toán học Trong chuyên đề này, chúng ta sẽ cùng nhau tìm hiểu và bổ sung kiến thức về hàm số, một khái niệm quan trọng trong toán học. Hàm số là một mối quan hệ giữa các biến số x và y, trong đó với mỗi giá trị của x, ta luôn tìm được một giá trị tương ứng của y. Điều kiện xác định của hàm số là tất cả các giá trị của x khi thực hiện biểu thức hàm số, ta được kết quả có ý nghĩa. Đồ thị của hàm số là tập hợp các điểm M(x;y) trong mặt phẳng Oxy, thỏa mãn phương trình y = f(x). Chúng ta cũng sẽ tìm hiểu về hàm số đồng biến và hàm số nghịch biến. Hàm số đồng biến là khi giá trị của biến x tăng thì giá trị của hàm số cũng tăng, trong khi hàm số nghịch biến lại ngược lại. Ta cũng sẽ thực hành các dạng bài tập cơ bản và nâng cao như tính giá trị của hàm số, biểu diễn điểm trên mặt phẳng, xét sự đồng biến và nghịch biến, cũng như phát triển tư duy. Cuối cùng, chúng ta sẽ có cơ hội tự luyện và rèn luyện phản xạ thông qua các bài tập trắc nghiệm. Đây sẽ là cơ hội tuyệt vời để củng cố kiến thức và kỹ năng trong chương trình Đại số lớp 9 chương 2 bài số 1. Hãy chuẩn bị tinh thần và cùng nhau khám phá thế giới của hàm số trong toán học nhé!