Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi định kỳ lần 3 Toán 12 năm học 2018 - 2019 trường THPT chuyên Bắc Ninh

giới thiệu đến thầy, cô và các em đề thi định kỳ lần 3 Toán 12 năm học 2018 – 2019 trường THPT chuyên Bắc Ninh, đây là đề thi thử THPT Quốc gia 2019 môn Toán của trường, nhằm kiểm tra kiến thức thường xuyên để giúp học sinh củng cố, nâng cao kiến thức, kỹ năng giải toán hướng đến kỳ thi chính thức môn Toán THPTQG năm 2019, đề được biên soạn với cấu trúc tương tự đề minh họa môn Toán 2019, đề gồm 06 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, học sinh làm bài trong 90 phút, không kể thời gian giáo viên phát đề, nội dung đề chủ yếu vẫn xoay quanh chương trình Toán 12, ngoài ra còn có một số ít những câu hỏi thuộc chương trình Toán lớp 10 và 11, đề thi có đáp án các mã đề 132, 209, 357, 485. Trích dẫn đề thi định kỳ lần 3 Toán 12 năm học 2018 – 2019 trường THPT chuyên Bắc Ninh : + Trên bàn có một cốc nước hình trụ chứa đầy nước, có chiều cao bằng 3 lần đường kính của đáy; một viên bi và một khối nón đều bằng thủy tinh. Biết viên bi là một khối cầu có đường kính bằng của cốc nước. Người ta từ từ thả vào cốc nước viên bi và khối nón đó (như hình vẽ) thì thấy nước trong cốc tràn ra ngoài. Tính tỉ số thể tích của lượng nước còn lại trong cốc và lượng nước ban đầu (bỏ qua bề dày của lớp vỏ thủy tinh). + Một khối trụ có thể tích bằng 16pi. Nếu chiều cao khối trụ tăng lên hai lần và giữ nguyên bán kính đáy thì được khối trụ mới có diện tích xung quanh bằng 16pi. Bán kính đáy của khối trụ ban đầu là? [ads] + Trong các mệnh đề sau đây, mệnh đề nào là đúng? A. Hai đường thẳng cùng vuông góc với một đường thẳng thì song song với nhau. B. Một đường thẳng vuông góc với một trong hai đường thẳng vuông góc thì song song với đường thẳng còn lại. C. Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại. D. Hai đường thẳng cùng vuông góc với một đường thẳng thì vuông góc với nhau.

Nguồn: toanmath.com

Đọc Sách

Đề thi giữa học kỳ I năm học 2017 - 2018 môn Toán 12 trường THPT Lương Thế Vinh - Hà Nội
Đề thi giữa học kỳ I năm học 2017 – 2018 môn Toán 12 trường THPT Lương Thế Vinh – Hà Nội gồm 4 mã đề, mỗi đề gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 100 phút, tất cả các mã đề đều có đáp án . Trích dẫn đề thi : + Chu kì bán hủy của chất phóng xạ Plutôni Pu239 là 24360 năm (tức là một lượng Pu239 sau 24360 năm phân hủy chỉ còn lại một nửa). Sự phân hủy được tính theo công thức S = A.e^rt, trong đó A là lượng phóng xạ ban đầu, r là tỷ lệ phân hủy hàng năm (r < 0), t là thời gian phân hủy, S là lượng còn lại sau thời gian phân hủy t. Hỏi 100 gam Pu239 sau bao lâu còn 20 gam? A. 73180 năm B. 53120 năm C. 56562 năm D. 65562 năm [ads] + Ông Bình dự định gửi vào ngân hàng một số tiền với lãi suất 6, 5% một năm. Biết rằng cứ sau mỗi năm số tiễn lãi sẽ gộp vào vốn ban đầu. Tính số tiền x (triệu đồng, x ∈ N) ông Bình gửi vào ngân hàng để sau 3 năm số tiền lãi vừa đủ mua một chiếc xe máy trị giá 60 triệu đồng. A. 300 triệu đồng B. 280 triệu đồng C. 289 triệu đồng D. 308 triệu đồng + Cho hình nón có đường cao và bán kính đáy bằng nhau và bằng 3. Trong tất cả các khối trụ nằm trong hình nón có một đáy thuộc mặt đáy của hình nón và đường tròn đáy còn lại thuộc hình nón, thể tích khối trụ lớn nhất là: A. 4π√3 B. 9π/2 C. 27π D. 4π
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT Hoa Lư A - Ninh Bình lần 1
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT Hoa Lư A – Ninh Bình gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, kỳ thi diễn ra vào ngày 28 tháng 10 năm 2017. Trích dẫn đề thi : + Cho hàm số y = f(x) có đạo hàm trên R và đồ thị hàm số y = f'(x) trên R như hình bên. Mệnh đề nào dưới đây đúng? A. Hàm số y = f(x) có 1 điểm cực đại và 1 điểm cực tiểu B. Hàm số y = f(x) có 2 điểm cực đại và 2 điểm cực tiểu C. Hàm số y = f(x) có 1 điểm cực đại và 2 điểm cực tiểu D. Hàm số y = f(x) có 2 điểm cực đại và 1 điểm cực tiểu [ads] + Cho hàm số bậc bốn y = ax^4 + bx^2 + c (a ≠ 0) có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng? A. a > 0, b < 0, c < 0 B. a > 0, b > 0, c < 0 C. a > 0, b < 0, c > 0 D. a < 0, b > 0, c < 0 + Cho hai đường thẳng song song a và b. Trên đường thẳng a lấy 6 điểm phân biệt; trên đường thẳng b lấy 5 điểm phân biệt. Chọn ngẫu nhiên 3 điểm trong các điểm đã cho trên hai đường thẳng a và b . Tính xác xuất để 3 điểm được chọn tạo thành một tam giác. A. 5/11 B. 60/169 C. 2/11 D. 9/11
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT chuyên Thái Bình lần 1
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT chuyên Thái Bình lần 1 gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi thử có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Độ giảm huyết áp của một bệnh nhân được cho bởi công thức G(x) = 0,035x^2(15 – x), trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam). Tính liều lượng thuốc cần tiêm (đơn vị miligam) cho bệnh nhân để huyết áp giảm nhiều nhất. A. x = 8 B. x = 10 C. x= 15 D. x = 7 [ads] + Một tấm kẽm hình vuông ABCD có cạnh bằng 30cm. Người ta gập tấm kẽm theo hai cạnh EF và GH cho đến khi AD và BC trùng nhau như hình vẽ bên để được một hình lăng trụ khuyết hai đáy. Giá trị của x để thể tích khối lăng trụ lớn nhất là? A. x = 5 cm B. x = 9 cm C. x = 8 cm D. x = 10 cm + Cho hàm số y = f(x) có đao hàm trên R. Đường cong trong hình vẽ bên là đồ thị của hàm số y = f'(x), (y = f'(x) liên tục trên R). Xét hàm số g(x) = f(x^2 – 2). Mệnh đề nào dưới đây sai? A. Hàm số g(x) nghịch biến trên (−∞; −2) B. Hàm số g(x) đồng biến trên (2; +∞) C. Hàm số g(x) nghịch biến trên (−1; 0) D. Hàm số g(x) nghịch biến trên (0; 2)
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT chuyên Quang Trung - Bình Phước lần 1
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT chuyên Quang Trung – Bình Phước lần 1 gồm 5 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề thi : + Chọn phát biểu đúng. A. Các hàm số y = sin x, y = cos x, y = cot x đều là hàm số chẵn B. Các hàm số y = sin x, y = cos x, y = cot x đều là hàm số lẻ C. Các hàm số y = sin x, y = cot x, y = tan x đều là hàm số chẵn D. Các hàm số y = sin x, y = cot x, y = tan x đều là hàm số lẻ + Trên tập số phức, cho phương trình: az^2 + bz + c = 0 (a, b, c ∈ R). Chọn kết luận sai. A. Nếu b = 0 thì phương trình có hai nghiệm mà tổng bằng 0 B. Nếu Δ = b^2 – 4ac < 0 thì phương trình có hai nghiệm mà modun bằng nhau C. Phương trình luôn có hai nghiệm phức là liên hợp của nhau D Phương trình luôn có nghiệm + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, K lần lượt là trung điểm của CD, CB, SA. Thiết diện của hình chóp cắt bởi mặt phẳng (MNK) là một đa giác (H). Hãy chọn khẳng định đúng. A. (H) là một hình thang B. (H) là một ngũ giác C. (H) là một hình bình hành D. (H) là một tam giác