Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT huyện Phúc Thọ Hà Nội

Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT huyện Phúc Thọ Hà Nội Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT huyện Phúc Thọ Hà Nội Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT huyện Phúc Thọ Hà Nội Xin chào quý thầy cô giáo và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2022 – 2023 của phòng Giáo dục và Đào tạo huyện Phúc Thọ, thành phố Hà Nội. Đề thi bao gồm 5 bài toán dạng tự luận trên 1 trang, thời gian làm bài là 150 phút (không tính thời gian phát đề). Trích dẫn một số câu hỏi trong đề thi: + Đề cho x, y là hai số dương thoả mãn (x + y)2 >= 6 + 2xy. Hãy tìm giá trị nhỏ nhất của biểu thức Q = x^4 – 2.2 + y^2 + 6/x^2 + 8/y^2. + Cho M = (x^2 + 2yz – 1)(y^2 + 2xz – 1)(1 – z^2 – 2xy), với xy + yz + zx = 1. Chứng minh rằng M là một số hữu tỉ. + Trong tam giác ABC vuông tại A, đường cao AH, I là trung điểm AC, F là hình chiếu của I trên BC. Kẻ tia CE vuông góc AC cắt IF tại E. Hãy tính độ dài AH và AC, chứng minh HA.HI = HB.HE, chứng minh AE vuông góc với BI. Chúc quý thầy cô và các em học sinh đạt kết quả cao trong đề thi học sinh giỏi Toán lớp 9 năm 2022 – 2023. Hy vọng rằng đề thi sẽ giúp các bạn rèn luyện và phát triển khả năng Toán của mình!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2022 - 2023 trường THCS Nghi Thủy - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 trường THCS Nghi Thủy, huyện Cửa Lò, tỉnh Nghệ An.
Đề chọn học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Tân Kỳ - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tân Kỳ, tỉnh Nghệ An; kỳ thi được diễn ra vào ngày 12 tháng 10 năm 2022. Trích dẫn Đề chọn học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT Tân Kỳ – Nghệ An : + Tìm số tự nhiên n sao cho n2 + 2022 là số chính phương. + Cho a, b, c là các số nguyên khác 0 thỏa mãn điều kiện: (1/a + 1/b + 1/c)2 = 1/a2 + 1/b2 + 1/c2. Chứng minh rằng: a3 + b3 + c3 chia hết cho 3. + Cho tam giác ABC nhọn và điểm P nằm trong tam giác đó. Chứng minh khoảng cách lớn nhất trong các khoảng cách từ P tới ba đỉnh của tam giác không nhỏ hơn hai lần khoảng cách bé nhất trong các khoảng cách từ điểm P đến các cạnh của tam giác đó.
Đề HSG Toán 9 vòng 1 năm 2022 - 2023 liên trường THCS huyện Diễn Châu - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp trường vòng 1 năm học 2022 – 2023 cụm thi liên trường THCS trực thuộc phòng Giáo dục và Đào tạo huyện Diễn Châu, tỉnh Nghệ An. Trích dẫn Đề HSG Toán 9 vòng 1 năm 2022 – 2023 liên trường THCS huyện Diễn Châu – Nghệ An : + Đa thức f(x) khi chia cho x – 5 được số dư là 14 và khi chia cho x + 1 được số dư là 2. Tìm đa thức dư trong phép chia đa thức f(x) cho đa thức x2 – 4x – 5. + Cho tam giác nhọn ABC có các đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh rằng: EF BC A cos b) Gọi I là trung điểm cua AH, M là trung điểm của BC, K là giao điểm của EF và IM. Chứng minh rằng: 2 AH 4 IK IM. + Cho tam giác ABC (AB < AC), trọng tâm G. Qua G vẽ đường thẳng d cắt các cạnh AB, AC thứ tự ở D và E. Chứng minh rằng, khi đường thẳng d thay đổi (cắt các cạnh AB, AC) thì tổng AB AC AD AE có giá trị không đổi.
Đề khảo sát HSG Toán 9 tháng 10 năm 2022 phòng GDĐT Chí Linh - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng đội tuyển học sinh giỏi môn Toán 9 tháng 10 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Chí Linh, tỉnh Hải Dương. Trích dẫn Đề khảo sát HSG Toán 9 tháng 10 năm 2022 phòng GD&ĐT Chí Linh – Hải Dương : + Tìm các số nguyên dương x, y thỏa mãn phương trình: x(y2 + 1) = 2y(16 – x). + Cho a, b, c, k là các số nguyên thỏa mãn: a3 + b3 + c3 − 1 = k2 – 2k – 2a + b – 2c. Chứng minh rằng k − 1 chia hết cho 3. + Cho nửa đường tròn (O;R) đường kính BC. A là điểm di động trên nửa đường tròn. Vẽ AH vuông góc với BC tại H. Đường tròn đường kính AH cắt AB, AC lần lượt tại D, E và cắt (O) tại M. AO cắt DE tại I. a) Tính DE3/BD.CE theo R. b) Tính: AI/HB + AI/HC. c) Xác định vị trí của điểm A để diện tích tam giác ABH lớn nhất.