Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và phương pháp giải toán số học và tổ hợp - Nguyễn Quốc Bảo

Tài liệu gồm 523 trang, được biên soạn bởi thầy giáo Nguyễn Quốc Bảo, phân dạng và hướng dẫn phương pháp giải toán chuyên đề số học và tổ hợp; tài liệu được sử dụng để bồi dưỡng học sinh giỏi Toán 8 – Toán 9 và ôn thi tuyển sinh vào lớp 10 môn Toán. Phần I . CÁC CHỦ ĐỀ SỐ HỌC THCS. Chủ đề 1 . Các bài toán về ước và bội. 1. Các bài toán liên quan tới số ước của một số. 2. Tìm số nguyên n thỏa mãn điều kiện chia hết. 3. Tìm số biết ƯCLN của chúng. 4. Tìm số biết BCNN và ƯCLN. 5. Các bài toán về các số nguyên tố cùng nhau. 6. Các bài toán về phân số tối giản. 7. Tìm ƯCLN của các biểu thức. 8. Liên hệ phép chia có dư, phép chia hết, ƯCLN, BCNN. 9. Tìm ƯCLN của hai số bằng thuật toán Ơ-clit. Chủ đề 2 . Các bài toán về quan hệ chia hết. 1. Sử dụng tính chất n số tự nhiên liên tiếp có một và chỉ một số chia hết cho n. 2. Sử dụng phương pháp phân tích thành nhân tử. 3. Sử dụng phương pháp tách tổng. 4. Sử dụng hằng đẳng thức. 5. Sử dụng phương pháp xét số dư. 6. Sử dụng phương pháp phản chứng. 7. Sử dụng phương pháp quy nạp. 8. Sử dụng nguyên lý Dirichlet. 9. Xét đồng dư. 10. Tìm điều kiện của biến để biểu thức chia hết. 11. Các bài toán cấu tạo số liên quan đến tính chia hết. 12. Các bài chia hết sử dụng định lý Fermat. 13. Các bài toán chia hết liên quan đến đa thức. Chủ đề 3 . Các bài toán về số nguyên tố, hợp số. 1. Chứng minh một số là số nguyên tố hay hợp số. 2. Chứng minh các bài toán liên quan đến tính chất số nguyên tố. 3. Tìm số nguyên tố thỏa mãn điều kiện nào đó. 4. Nhận biết số nguyên tố, sự phân bố số nguyên tố. 5. Chứng minh có vô số nguyên tố có dạng ax + b với (a;b) = 1. 6. Sử dụng nguyên lý Dirich trong bài toán số nguyên tố. 7. Áp dụng định lý Fermat. Chủ đề 4 . Các bài toán về số chính phương. 1. Chứng minh một số là số chính phương hay là tổng nhiều số chính phương. 2. Chứng minh một số không phải là số chính phương. 3. Tìm điều kiện của biến để một số là số chính phương. 4. Tìm số chính phương. Chủ đề 5 . Sử dụng đồng dư thức trong chứng minh các bài toán chia hết. 1. Sử dụng đồng dư thức trong chứng minh các bài toán chia hết. 2. Sử dụng đồng dư thức trong tìm số dư. 3. Sử dụng đồng dư thức trong tìm điều kiện của biến để chia hết. 4. Sử dụng đồng dư thức trong tìm một chữ số tận cùng. 5. Sử dụng đồng dư thức trong tìm hai chữ số tận cùng. 6. Sử dụng đồng dư thức trong các bài toán về số chính phương. 7. Sử dụng đồng dư thức trong các bài toán số nguyên tố, hợp số. 8. Sử dụng đồng dư thức trong phương trình nghiệm nguyên. 9. Sử dụng các định lý. Chủ đề 6 . Phương trình nghiệm nguyên. 1. Phát hiện tính chia hết của một ẩn. 2. Phương pháp đưa về phương trình ước số. 3. Phương pháp tách ra các giá trị nguyên. 4. Phương pháp sử dụng tính chẵn, lẻ và số dư từng vế. 5. Phương pháp sử dụng bất đẳng thức. 6. Phương pháp dùng tính chất của số chính phương. 7. Phương pháp lùi vô hạn, nguyên tắc cực hạn. Chủ đề 7 . Phần nguyên trong số học. 1. Phần nguyên của một số hoặc một biểu thức. 2. Chứng minh một đẳng thức chứa phần nguyên. 3. Phương trình phần nguyên. 4. Bất phương trình phần nguyên. 5. Phần nguyên trong chứng minh một số dạng toán số học. 6. Chứng minh bất đẳng thức chứa phần nguyên. Chủ đề 8 . Nguyên lý Dirichlet trong số học. 1. Chứng minh sự tồn tại chia hết. 2. Các bài toán về tính chất phần tử trong tập hợp. 3. Bài toán liên quan đến bảng ô vuông. 4. Bài toán liên quan đến thực tế. 5. Bài toán liên quan đến sự sắp xếp. 6. Vận dụng nguyên lý Dirichlet trong các bài toán hình học. Chủ đề 9 . Các bài toán sử dụng nguyên lý cực hạn. Chủ đề 10 . Nguyên lý bất biến trong giải toán. Phần II . HƯỚNG DẪN GIẢI – ĐÁP SỐ.

Nguồn: toanmath.com

Đọc Sách

Tổng hợp các bài toán hình học phẳng ôn thi vào THPT năm học 2018 2019
Nội dung Tổng hợp các bài toán hình học phẳng ôn thi vào THPT năm học 2018 2019 Bản PDF - Nội dung bài viết Tổng hợp bài tập hình học phẳng ôn thi vào THPT 2018-2019 Tổng hợp bài tập hình học phẳng ôn thi vào THPT 2018-2019 Tài liệu này được biên soạn bởi hai tác giả là Tạ Công Hoàng và Nguyễn Đăng Khoa, với 119 trang tập hợp các bài toán hình học phẳng ôn thi vào lớp 10 THPT trong năm học 2018-2019. Hình học phẳng là một dạng toán không thể thiếu khi ôn thi vào trường phổ thông.
Tổng ôn tập Toán THCS thi vào
Nội dung Tổng ôn tập Toán THCS thi vào Bản PDF - Nội dung bài viết Tổng ôn tập Toán THCS thi vào lớp 10 Tổng ôn tập Toán THCS thi vào lớp 10 Cuốn sách Tổng ôn tập Toán THCS thi vào lớp 10 là tài liệu học tập quan trọng cho học sinh lớp 9 chuẩn bị cho kỳ thi chuyển cấp lên lớp 10. Sách bao gồm 193 trang hệ thống các chủ đề Toán học chính từ lớp 6 đến lớp 9, giúp học sinh ôn tập và củng cố kiến thức một cách toàn diện. Với sự biên soạn của các tác giả uy tín như Mai Công Mãn, Nguyễn Trọng Dương, Nguyễn Thế Vận, Nguyễn Thị Hiền, Thiều Thị Huyền, sách mang đến cho học sinh những kiến thức cơ bản và quan trọng trong môn Toán. Nội dung sách được chia thành hai phần chính: phần Đại số và phần Hình học, bao gồm các chủ đề như biến đổi đồng nhất, hàm số và đồ thị, phương trình, hệ phương trình, định lý Talet, đường tròn, hình học không gian. Qua sách Tổng ôn tập Toán THCS thi vào lớp 10, học sinh sẽ có cơ hội ôn tập lại những kiến thức đã học, rèn luyện kỹ năng giải các bài tập phức tạp và chuẩn bị tốt cho kỳ thi vào lớp 10. Đồng thời, sách cũng là tài liệu hữu ích để học sinh tiếp tục học tốt môn Toán THPT sau này.
16 chuyên đề ôn thi vào môn Toán
Nội dung 16 chuyên đề ôn thi vào môn Toán Bản PDF - Nội dung bài viết Sách Ôn Thi Toán Lớp 10 - 16 Chuyên Đề Sách Ôn Thi Toán Lớp 10 - 16 Chuyên Đề Sytu xin giới thiệu đến quý thầy cô và các em học sinh cuốn sách "16 chuyên đề ôn thi vào lớp 10 môn Toán", với 192 trang bao gồm 9 chuyên đề Đại số và 7 chuyên đề Hình học. Sách được biên soạn bởi các tác giả: Bùi Văn Tuyên và Nguyễn Đức Trường. Phần Đại số bao gồm: Chuyên đề 1: Rút gọn và tính giá trị của biểu thức Chuyên đề 2: Giải phương trình và hệ phương trình bậc nhất hai ẩn Chuyên đề 3: Phương trình bậc hai một ẩn Chuyên đề 4: Giải bài toán bằng cách lập phương trình hoặc hệ phương trình Chuyên đề 5: Hàm số và đồ thị Chuyên đề 6: Chứng minh bất đẳng thức Chuyên đề 7: Giải bất phương trình Chuyên đề 8: Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức Chuyên đề 9: Giải toán có nội dung số học Phần Hình học bao gồm: Chuyên đề 10: Chứng minh các hệ thức hình học Chuyên đề 11: Chứng minh tứ giác nội tiếp và nhiều điểm cùng nằm trên đường tròn Chuyên đề 12: Chứng minh quan hệ tiếp xúc giữa đường thẳng và đường tròn hoặc hai đường tròn Chuyên đề 13: Chứng minh điểm cố định Chuyên đề 14: Các bài tập có nội dung tính toán Chuyên đề 15: Quỹ tích và dựng hình Đây sẽ là nguồn tư liệu hữu ích giúp các em học sinh ôn tập và chuẩn bị tốt cho kỳ thi vào lớp 10 môn Toán. Hy vọng sách sẽ giúp đỡ các em hiểu rõ hơn về các chuyên đề và nâng cao kiến thức Toán của mình.
Tài liệu chuyên Toán THCS
Nội dung Tài liệu chuyên Toán THCS Bản PDF - Nội dung bài viết Tài liệu chuyên Toán THCS Tài liệu chuyên Toán THCS Tài liệu chuyên Toán THCS bao gồm 70 trang với nhiều chuyên đề bồi dưỡng Toán phù hợp cho học sinh khối chuyên và học sinh giỏi các lớp 6, 7, 8, 9. Đây là các chuyên đề thường xuất hiện trong các đề thi HSG, giúp học sinh rèn luyện và nâng cao kiến thức Toán một cách thực tế và hiệu quả.