Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và phương pháp giải toán số học và tổ hợp - Nguyễn Quốc Bảo

Tài liệu gồm 523 trang, được biên soạn bởi thầy giáo Nguyễn Quốc Bảo, phân dạng và hướng dẫn phương pháp giải toán chuyên đề số học và tổ hợp; tài liệu được sử dụng để bồi dưỡng học sinh giỏi Toán 8 – Toán 9 và ôn thi tuyển sinh vào lớp 10 môn Toán. Phần I . CÁC CHỦ ĐỀ SỐ HỌC THCS. Chủ đề 1 . Các bài toán về ước và bội. 1. Các bài toán liên quan tới số ước của một số. 2. Tìm số nguyên n thỏa mãn điều kiện chia hết. 3. Tìm số biết ƯCLN của chúng. 4. Tìm số biết BCNN và ƯCLN. 5. Các bài toán về các số nguyên tố cùng nhau. 6. Các bài toán về phân số tối giản. 7. Tìm ƯCLN của các biểu thức. 8. Liên hệ phép chia có dư, phép chia hết, ƯCLN, BCNN. 9. Tìm ƯCLN của hai số bằng thuật toán Ơ-clit. Chủ đề 2 . Các bài toán về quan hệ chia hết. 1. Sử dụng tính chất n số tự nhiên liên tiếp có một và chỉ một số chia hết cho n. 2. Sử dụng phương pháp phân tích thành nhân tử. 3. Sử dụng phương pháp tách tổng. 4. Sử dụng hằng đẳng thức. 5. Sử dụng phương pháp xét số dư. 6. Sử dụng phương pháp phản chứng. 7. Sử dụng phương pháp quy nạp. 8. Sử dụng nguyên lý Dirichlet. 9. Xét đồng dư. 10. Tìm điều kiện của biến để biểu thức chia hết. 11. Các bài toán cấu tạo số liên quan đến tính chia hết. 12. Các bài chia hết sử dụng định lý Fermat. 13. Các bài toán chia hết liên quan đến đa thức. Chủ đề 3 . Các bài toán về số nguyên tố, hợp số. 1. Chứng minh một số là số nguyên tố hay hợp số. 2. Chứng minh các bài toán liên quan đến tính chất số nguyên tố. 3. Tìm số nguyên tố thỏa mãn điều kiện nào đó. 4. Nhận biết số nguyên tố, sự phân bố số nguyên tố. 5. Chứng minh có vô số nguyên tố có dạng ax + b với (a;b) = 1. 6. Sử dụng nguyên lý Dirich trong bài toán số nguyên tố. 7. Áp dụng định lý Fermat. Chủ đề 4 . Các bài toán về số chính phương. 1. Chứng minh một số là số chính phương hay là tổng nhiều số chính phương. 2. Chứng minh một số không phải là số chính phương. 3. Tìm điều kiện của biến để một số là số chính phương. 4. Tìm số chính phương. Chủ đề 5 . Sử dụng đồng dư thức trong chứng minh các bài toán chia hết. 1. Sử dụng đồng dư thức trong chứng minh các bài toán chia hết. 2. Sử dụng đồng dư thức trong tìm số dư. 3. Sử dụng đồng dư thức trong tìm điều kiện của biến để chia hết. 4. Sử dụng đồng dư thức trong tìm một chữ số tận cùng. 5. Sử dụng đồng dư thức trong tìm hai chữ số tận cùng. 6. Sử dụng đồng dư thức trong các bài toán về số chính phương. 7. Sử dụng đồng dư thức trong các bài toán số nguyên tố, hợp số. 8. Sử dụng đồng dư thức trong phương trình nghiệm nguyên. 9. Sử dụng các định lý. Chủ đề 6 . Phương trình nghiệm nguyên. 1. Phát hiện tính chia hết của một ẩn. 2. Phương pháp đưa về phương trình ước số. 3. Phương pháp tách ra các giá trị nguyên. 4. Phương pháp sử dụng tính chẵn, lẻ và số dư từng vế. 5. Phương pháp sử dụng bất đẳng thức. 6. Phương pháp dùng tính chất của số chính phương. 7. Phương pháp lùi vô hạn, nguyên tắc cực hạn. Chủ đề 7 . Phần nguyên trong số học. 1. Phần nguyên của một số hoặc một biểu thức. 2. Chứng minh một đẳng thức chứa phần nguyên. 3. Phương trình phần nguyên. 4. Bất phương trình phần nguyên. 5. Phần nguyên trong chứng minh một số dạng toán số học. 6. Chứng minh bất đẳng thức chứa phần nguyên. Chủ đề 8 . Nguyên lý Dirichlet trong số học. 1. Chứng minh sự tồn tại chia hết. 2. Các bài toán về tính chất phần tử trong tập hợp. 3. Bài toán liên quan đến bảng ô vuông. 4. Bài toán liên quan đến thực tế. 5. Bài toán liên quan đến sự sắp xếp. 6. Vận dụng nguyên lý Dirichlet trong các bài toán hình học. Chủ đề 9 . Các bài toán sử dụng nguyên lý cực hạn. Chủ đề 10 . Nguyên lý bất biến trong giải toán. Phần II . HƯỚNG DẪN GIẢI – ĐÁP SỐ.

Nguồn: toanmath.com

Đọc Sách

Các bài toán chứng minh cực trị hình học
Tài liệu gồm 50 trang, hướng dẫn phương pháp giải các bài toán chứng minh cực trị hình học, đây là dạng toán thường gặp trong các đề tuyển sinh vào lớp 10 môn Toán. A. Phương pháp giải bài toán cực trị hình học. 1. Dạng chung của bài toán cực trị hình học. 2. Hướng giải bài toán cực trị hình học. 3. Cách trình bày lời giải bài toán cực trị hình học. B. Các kiến thức thường dùng giải bài toán cực trị hình học. 1. Sử dụng quan hệ giữa đường vuông góc, đường xiên, hình chiếu. 2. Sử dụng quan hệ giữa đường thẳng và đường gấp khúc. 3. Sử dụng các bất đẳng thức trong đường tròn. 4. Sử dụng bất đẳng thức về lũy thừa bậc hai. 5. Sử dụng bất đẳng thức Cô-si. 6. Sử dụng tỉ số lượng giác. C. Một số bài toán ôn luyện có hướng dẫn. D. Bài tập tự luyện. E. Rèn luyện tổng hợp.
Bài toán chứng minh các đường thẳng đồng quy
Tài liệu gồm 16 trang, hướng dẫn phương pháp giải bài toán chứng minh các đường thẳng đồng quy, đây là dạng toán thường gặp trong các đề tuyển sinh vào lớp 10 môn Toán. 1. CÁC PHƯƠNG PHÁP THƯỜNG ĐƯỢC SỬ DỤNG Cách 1 . Lợi dụng định lí về các đường đồng quy trong tam giác. + Sử dụng định lí ba đường cao của tam giác đồng quy tại một điểm + Sử dụng định lí ba đường trung tuyến của tam giác đồng quy tại một điểm. Điểm đó gọi là trọng tâm của tam giác. + Sử dụng các định lí: 1.Ba đường phân giác của tam giác đồng quy tại một điểm. + Giao điểm của hai đường phân giác ngoài nằm trên đường phân giác trong của góc thứ ba. + Sử dụng định lí ba đường trung trực của tam giác đồng quy tại một điểm. Cách 2 . Sử dụng tính chất các đường chéo cắt nhau tai trung điểm mỗi đường của của hình bình hành, hình chữ nhật, hình thoi, hình vuông. Cách 3 . Lùi về quen thuộc, chứng minh ba điểm thẳng hàng hoặc giao điểm của hai đường nằm trên đường thẳng thứ ba. 2. BÀI TẬP ÁP DỤNG
Các bài toán chứng minh ba điểm thẳng hàng
Tài liệu gồm 21 trang, hướng dẫn phương pháp giải bài toán chứng minh ba điểm thẳng hàng, đây là dạng toán thường gặp trong đề thi tuyển sinh vào lớp 10 môn Toán. 1. Phương pháp chứng minh ba điểm thẳng hàng Phương pháp 1. Chứng minh điểm A thuộc đoạn thẳng BC. Phương pháp 2. Chứng minh qua 3 điểm xác định một góc bẹt (180 độ). Phương pháp 3. Chứng minh hai góc ở vị trí đối đỉnh mà bằng nhau. Phương pháp 4. Chứng minh 3 điểm xác định được hai đường thẳng cùng vuông góc hay cùng song song với một đường thẳng thứ 3 (tiên đề Ơclit). Phương pháp 5. Dùng tính chất đường trung trực: chứng minh 3 điểm đó cùng cách đều hai đầu đoạn thẳng. Phương pháp 6. Dùng tính chất tia phân giác: chứng minh 3 điểm đó cùng cách đều hai cạnh của một góc. Phương pháp 7. Sử dụng tính chất đồng quy của các đường: trung tuyến, phân giác, đường cao trong tam giác. Phương pháp 8. Sử dụng tính chất đường chéo của các tứ giác đặc biệt: hình vuông, hình chữ nhật, hình thoi, hình bình hành, hình thang. Phương pháp 9. Sử dụng tính chất tâm và đường kính của đường tròn. Phương pháp 10. Sử dụng tính chất hai đường tròn tiếp xúc nhau. 2. Ví dụ minh họa
Các bài toán chứng minh đẳng thức hình học
Với bài toán hình học trong đề thi tuyển sinh vào lớp 10 môn Toán, sẽ có những yêu cầu chứng minh hai đoạn thẳng bằng nhau hoặc các đoạn thẳng tỷ lệ … mà ta gọi chung là đẳng thức hình học. Tài liệu dưới đây sẽ hệ thống một số biện pháp chứng minh đẳng thức hình học. Dạng toán đẳng thức hình học là một dạng toán cũng không khó nhưng nó đòi hỏi người giải phải có cái nhìn nhanh (tiết kiệm thời gian) và chuẩn (giải đúng kiếm điểm), xác định đúng phương pháp vô cùng quan trọng. Chính vì vậy việc tự luyện giải nhiều bài toán hình học sẽ giúp cho các em có kỹ năng giải. PHẦN 1 . LÝ THUYẾT CHỨNG MINH ĐẲNG THỨC HÌNH HỌC. A. CHỨNG MINH HAI ĐOẠN THẲNG BẰNG NHAU. Phương pháp 1: Hai tam giác bằng nhau. Phương pháp 2: Sử dụng tính chất của các hình đặc biệt. 1. Hai cạnh bên của tam giác cân, tam giác đều. 2. Sử dụng tính chất về cạnh và đường chéo của các tứ giác đặc biệt: hình thang cân, hình bình hành, hình chữ nhật, hình vuông, hình thoi. Phương pháp 3: Sử dụng tính chất của các đường đặc biệt, điểm đặc biệt. 1. Sử dụng tính chất đường trung tuyến (đường thẳng đi qua trọng tâm tam giác), đường trung tuyến của tam giác vuông, đường trung bình trong tam giác, các đường đồng quy trong tam giác đặc biệt. 2. Điểm nằm trên tia phân giác của một góc thì cách đều hai cạnh của góc đó. 3. Khoảng cách từ một điểm trên đường trung trực của một đoạn thẳng đến hai đầu đoạn thẳng. 4. Sử dụng tính chất trung điểm. 5. Hình chiếu của hai đường xiên bằng nhau và ngược lại. Phương pháp 4: Sử dụng các tính chất liên quan đến đường tròn. 1. Sử dụng tính chất hai dây cách đều tâm trong đường tròn. 2. Sử dụng tính chất hai tiếp tuyến giao nhau trong đường tròn. 3. Sử dụng quan hệ giữa cung và dây cung trong một đường tròn. Phương pháp 5: Sử dụng tỉ số, đoạn thẳng trung gian. 1. Dùng tính chất bắc cầu: Hai đoạn thẳng cùng bằng đoạn thẳng thứ ba. 2. Có cùng độ dài (cùng số đo) hoặc cùng nghiệm đúng một hệ thức. 3. Đường thẳng song song cách đều. 4. Sử dụng tính chất của các đẳng thức, hai phân số bằng nhau. 5. Sử dụng kiến thức về diện tích. 6. Sử dụng bình phương của chúng bằng nhau (có thể sử dụng định lí Pitago, tam giác đồng dạng, hệ thức lượng trong tam giác, trong đường tròn để đưa về bình phương của chúng bằng nhau). B. CHỨNG MINH HAI ĐOẠN THẲNG TỈ LỆ. 1. Tính chất trung điểm của đoạn thẳng. 2. Tính chất ba đường trung tuyến trong tam giác. 3. Đường trung bình. 4. Định lý Talet. 5. Tính chất đường phân giác của tam giác. 6. Các trường hợp đồng dạng của tam giác. 7. Hệ thức lượng trong tam giác vuông. 8. Tỉ số lượng giác của góc nhọn. PHẦN 2 . BÀI TẬP CHỨNG MINH ĐẲNG THỨC HÌNH HỌC PHẲNG.