Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển HSG lớp 12 môn Toán THPT năm 2020 2021 sở GD ĐT Quảng Trị

Nội dung Đề chọn đội tuyển HSG lớp 12 môn Toán THPT năm 2020 2021 sở GD ĐT Quảng Trị Bản PDF Ngày … tháng 10 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Trị tổ chức kỳ thi chọn đội tuyển học sinh giỏi văn hóa lớp 12 THPT dự thi Quốc gia môn Toán năm học 2020 – 2021. Đề chọn đội tuyển HSG Toán lớp 12 THPT năm 2020 – 2021 sở GD&ĐT Quảng Trị gồm hai vòng thi: đề thi vòng 1 gồm 04 câu, đề thi vòng 2 gồm 03 câu. Trích dẫn đề chọn đội tuyển HSG Toán lớp 12 THPT năm 2020 – 2021 sở GD&ĐT Quảng Trị : + Một bảng n x n (n >= 2) được chia thành các hình vuông đơn vị. Mỗi hình vuông đơn vị đó được tô màu đỏ hoặc màu xanh. Hỏi có bao nhiêu cách tô màu sao cho mỗi hình vuông 2 x 2 có đúng hai hình vuông được tô màu đỏ và hai hình vuông được tô màu xanh? + Cho tam giác ABC cân tại A. Các điểm D, E lần lượt thuộc các cạnh AB, AC sao cho ED = EC. Gọi M là trung điểm DB, N là giao điểm của EM và BC. Chứng minh rằng góc DNB = góc DCA. + Cho tam giác ABC nhọn, không cân, nội tiếp (O). Các tiếp tuyến của (O) tại B và C cắt nhau tại D. Gọi M là trung điểm của BC, E là giao điểm của đường thẳng AC và BC, F (F khác A) là giao điểm thứ hai của (O) và đường tròn ngoại tiếp tam giác AME, N (N khác A) là giao điểm thứ hai của đường thẳng AM và (O). Chứng minh rằng đường thẳng FN đi qua trung điểm của MD.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG THPT năm học 2017 2018 lớp 12 môn Toán sở GD và ĐT Hà Nam
Nội dung Đề thi chọn HSG THPT năm học 2017 2018 lớp 12 môn Toán sở GD và ĐT Hà Nam Bản PDF Đề thi chọn HSG THPT năm học 2017 – 2018 môn Toán lớp 12 sở GD và ĐT Hà Nam gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi HSG Toán lớp 12 có lời giải chi tiết . Trích dẫn đề thi chọn HSG THPT năm học 2017 – 2018 môn Toán lớp 12 : + Cho hàm số y = -x^3 + 3mx^2 + 3(1 – m^2)x + m^3 – m^2, với m là tham số thực. Chứng minh rằng ∀m ∈ R hàm số trên luôn có hai điểm cực trị. Tìm tọa độ điểm M thuộc đồ thị hàm số trên thỏa mãn điều kiện điểm M vừa là điểm cực đại của đồ thị hàm số ứng với giá trị này của m đồng thời điểm M vừa là điểm cực tiểu của đồ thị ứng với giá trị khác của m. [ads] + Cho mặt cầu có tâm O và bán kính R. Từ một điểm S bất kỳ trên mặt cầu ta dựng ba cát tuyến bằng nhau, cắt mặt cầu tại các điểm A, B, C ( khác với S) và góc ASB = góc BSC = góc CSA = α. Tính thể tích khối chóp S.ABC theo R và α. Khi α thay đổi, tìm α để thể tích khối chóp S.ABC lớn nhất. + Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B. Biết AB = SD = 3a, AD = SB = 4a, đường chéo AC vuông góc với mặt phẳng (SBD). Tính theo a thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng BD và SA.
Đề thi chọn HSG Toán THPT cấp tỉnh năm học 2017 2018 sở GD và ĐT Hưng Yên
Nội dung Đề thi chọn HSG Toán THPT cấp tỉnh năm học 2017 2018 sở GD và ĐT Hưng Yên Bản PDF Đề thi chọn HSG Toán THPT cấp tỉnh năm học 2017 – 2018 sở GD và ĐT Hưng Yên gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 180 phút, không kể thời gian phát đề, nội dung đề bao gồm kiến thức Toán lớp 10, 11 và 12, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG Toán THPT cấp tỉnh : + Cho hình lăng trụ tam giác đều ABC.A’B’C′ có độ dài cạnh đáy bằng 2a, góc giữa mặt phẳng (A’BC) và mặt phẳng đáy bằng 60 độ. Gọi M, N lần lượt là trung điểm của các cạnh BC và CC′. Tính khoảng cách giữa hai đường thẳng A’M và AN theo a. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, AD = 2a. Mặt bên (SAB) là tam giác cân tại S và vuông góc với mặt phẳng đáy. Khoảng cách từ B đến mặt phẳng (SAC) bằng a√6/3. Tính thể tích khối chóp S.ABCD theo a. + Cho hàm số y = x^3 – 3x^2 + (m + 1)x – 4, m là tham số. Tìm các giá trị của m để đồ thị hàm số có 2 điểm cực trị và khoảng cách từ điểm A(7/2;1) đến đường thẳng đi qua hai điểm cực trị đó lớn nhất.
Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2017 2018 sở GD ĐT Lai Châu
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2017 2018 sở GD ĐT Lai Châu Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán lớp 12 cấp tỉnh năm học 2017 – 2018 sở Giáo dục và Đào tạo UBND tỉnh Lai Châu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm 2017 – 2018 sở GD&ĐT Lai Châu : + Cho các số thực không âm abc thỏa mãn abc 1. Tìm giá trị lớn nhất của biểu thức P ab ac bc 3 5. + Có 20 người xếp thành một vòng tròn. Hỏi có bao nhiêu cách chọn ra 5 người sao cho không có hai người kề nhau được chọn. + Cho hình lăng trụ ABCD A B C D có đáy ABCD là hình thoi. Hình chiếu vuông góc của A’ lên (ABCD) là trọng tâm của tam giác ABD. Biết AB a 0 ABC 120 AA a. Tính thể tích khối lăng trụ ABCD A B C D theo a.
Đề thi chọn HSG lớp 12 môn Toán THPT cấp tỉnh năm học 2017 2018 sở GD và ĐT Phú Thọ
Nội dung Đề thi chọn HSG lớp 12 môn Toán THPT cấp tỉnh năm học 2017 2018 sở GD và ĐT Phú Thọ Bản PDF Đề thi chọn HSG Toán lớp 12 THPT cấp tỉnh năm học 2017 – 2018 sở GD và ĐT Phú Thọ gồm 6 trang, thời gian làm bài 180 phút, đề thi gồm 2 phần: + Phần tư luận (8 điểm): Gồm 4 bài toán tự luận + Phần trắc nghiệm (12 điểm): Gồm 40 câu trắc nghiệm