Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh vào 10 chuyên năm 2019 - 2020 sở GDĐT Hưng Yên (Đề chung)

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề Toán tuyển sinh vào lớp 10 trường THPT chuyên năm học 2019 – 2020 sở GD&ĐT Hưng Yên, đây là đề thi chung dành cho các thí sinh tham gia dự thi (đề vòng 1). Đề Toán tuyển sinh vào 10 chuyên năm 2019 – 2020 sở GD&ĐT Hưng Yên (Đề chung) gồm có 1 trang, đề được biên soạn theo dạng đề tự luận với 5 bài toán, học sinh có 2 tiếng (120 phút) để hoàn thành bài thi Toán, đề thi có lời giải chi tiết và thang chấm điểm. [ads] Trích dẫn đề Toán tuyển sinh vào 10 chuyên năm 2019 – 2020 sở GD&ĐT Hưng Yên (Đề chung) : + Cho tam giác ABC vuông tại A. Vẽ các nửa đường tròn đường kính AB và AC sao cho các nửa đường tròn này không có điểm nào nằm trong tam giác ABC. Đường thẳng d đi qua A cắt các nửa đường tròn đường kính AB và AC theo thứ tự ở M và N (khác điểm A). Gọi I là trung điểm của đoạn thẳng BC. 1) Chứng minh tứ giác BMNC là hình thang vuông. 2) Chứng minh IM = IN. 3) Giả sử đường thẳng d thay đổi nhưng vẫn thỏa mãn điều kiện đề bài. Hãy xác định vị trí của đường thẳng d để chu vi tứ giác BMNC lớn nhất. + Cho hai đường thẳng (d): y = (m – 2)x + m và (Δ): y = -4x + 1. a) Tìm m để (d) song song với (Δ). b) Chứng minh đường thẳng (d) luôn đi qua điểm A(-1;2) với mọi m. c) Tìm tọa độ điểm B thuộc (Δ) sao cho AB vuông góc với (Δ). + Cho phương trình: x^2 – 2(m + 1)x + m^2 + 4 = 0 (1) (m là tham số). 1) Giải phương trình khi m = 2. 2) Tìm m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: x1^2 + 2(m + 1)x2 = 3m^2 + 16.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh vào 10 chuyên môn Toán chuyên năm 2018 - 2019 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 chuyên môn Toán chuyên năm học 2018 – 2019 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2018; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề tuyển sinh vào 10 chuyên môn Toán cơ sở năm 2018 - 2019 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 chuyên môn Toán cơ sở năm học 2018 – 2019 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 01 tháng 06 năm 2018; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề Toán tuyển sinh lớp 10 năm 2018 - 2019 sở GD và ĐT Bình Phước (đề chung)
Đề Toán tuyển sinh lớp 10 năm 2018 – 2019 sở GD và ĐT Bình Phước (đề chung cho tất cả các thí sinh) được biên soạn theo hình thức tự luận với 5 bài toán, thí sinh làm bài trong thời gian 120 phút (không kể thời gian phát đề), kỳ thi được diễn ra vào ngày 01/06/2018 nhằm đánh giá, phân loại năng lực học sinh khối 9, từ đó các trường THPT thuộc sở GD và ĐT Bình Phước có căn cứ để đưa ra mức điểm tuyển sinh phù hợp, tuyển chọn các em học sinh phù hợp với tiêu chí để chuẩn bị cho năm học mới, đề thi có lời giải chi tiết .
Đề Toán tuyển sinh lớp 10 năm 2018 - 2019 sở GD và ĐT Bình Phước (đề chuyên)
Đề Toán tuyển sinh lớp 10 năm 2018 – 2019 sở GD và ĐT Bình Phước (đề dành cho thí sinh thi vào trường chuyên) được biên soạn nhằm đánh giá năng lực học sinh khối 9, từ đó các trường THPT chuyên thuộc sở GD&ĐT Bình Phước có căn cứ tuyển sinh vào lớp 10 để chuẩn bị cho năm học mới, đề gồm 1 trang với 6 bài toán tự luận, thí sinh có 120 phút để hoàn thành đề thi, kỳ thi được tổ chức vào ngày 03/06/2018, đề thi có lời giải chi tiết . Trích dẫn đề Toán tuyển sinh lớp 10 năm 2018 – 2019 sở GD và ĐT Bình Phước : + Xét các số thực a, b, c với b ≠ a + c sao cho phương trình bậc hai ax^2 + bx + c = 0 có hai nghiệm thực m, n thỏa mãn 0 ≤ m, n ≤ 1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức M = [(a – b)(2a – c)]/[a(a – b + c)]. [ads] + Tìm tất cả các số nguyên tố p sao cho 16p + 1 là lập phương của số nguyên dương. + Cho Parabol (P): y = 1/2.x^2 và đường thẳng (d): y = (m + 1)x – m^2 – 1/2 (m là tham số). Với giá trị nào của m thì đường thẳng (d) cắt Parabol (P) tại hai điểm A(x1;y1), B(x2;y2) sao cho biểu thức T = y1 + y2 – x1.x2 đạt giá trị nhỏ nhất.