Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tham khảo Toán thi vào 10 năm 2023 2024 phòng GD ĐT thị xã Phú Thọ

Nội dung Đề tham khảo Toán thi vào 10 năm 2023 2024 phòng GD ĐT thị xã Phú Thọ Bản PDF - Nội dung bài viết Đề tham khảo Toán thi vào 10 năm 2023 - 2024 phòng GD&ĐT thị xã Phú Thọ Đề tham khảo Toán thi vào 10 năm 2023 - 2024 phòng GD&ĐT thị xã Phú Thọ Sytu xin gửi đến quý thầy cô và các em học sinh đề tham khảo môn Toán cho kỳ thi tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 của phòng Giáo dục và Đào tạo thị xã Phú Thọ, tỉnh Phú Thọ. Đề thi bao gồm câu hỏi và đáp án dự kiến để giúp các em ôn tập hiệu quả. Trích dẫn đề tham khảo Toán thi vào 10 năm 2023 - 2024 phòng GD&ĐT thị xã Phú Thọ: 1. Cho một số có hai chữ số. Nếu đổi chỗ hai chữ số của nó thì được một số mới lớn hơn số đã cho là 63. Tổng của số đã cho và số mới tạo thành 99. Tổng các chữ số của số đó là bao nhiêu? 2. Cho hàm số y = ax^2 với a ≠ 0. Kết luận nào sau đây là đúng? A. Hàm số đồng biến khi a > 0 và x > 0 B. Hàm số đồng biến khi a > 0 và x > 0 C. Hàm số đồng biến khi a > 0 và x < 0 D. Hàm số đồng biến khi a > 0 và x = 0. 3. Cho hai điểm A, B cố định. Một điểm C khác B di chuyển trên đường tròn (O) đường kính AB sao cho AC = BC. Tiếp tuyến của đường tròn (O) tại C cắt tiếp tuyến tại A ở D cắt AB ở E. Đường thẳng đi qua E vuông góc với AB cắt AC, BD lần lượt tại F, G. Gọi I là trung điểm của AE. a) Chứng minh rằng tứ giác ADCO nội tiếp một đường tròn. b) Chứng minh rằng 2AB = OD = BC c) Chứng minh EF^2 = EG^2 d) Chứng minh rằng trực tâm tam giác GIF là một điểm cố định. Hy vọng đề tham khảo này sẽ giúp các em học sinh ôn tập Toán hiệu quả và tự tin sẵn sàng cho kỳ thi tuyển sinh sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Ninh Bình
Thứ Sáu ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Ninh Bình tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Ninh Bình gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Ninh Bình : + Người ta đổ thêm 20 gam nước vào một dung dịch chứa 4 gam muối thì nồng độ của dung dịch giảm đi 10%. Hỏi trước khi đổ thêm nước thì dung dịch chứa bao nhiêu gam nước? [ads] + Cho ABC nhọn nội tiếp đường tròn tâm O. Hai đường cao BE, CF của ABC cắt nhau tại H. a) Chứng minh tứ giác BFEC nội tiếp đường tròn. b) Chứng minh rằng AF.AB = AE.AC. c) Kẻ đường kính AD của đường tròn tâm O. Chứng minh tứ giác BHCD là hình bình hành. + Một chiếc máy bay bay lên từ mặt đất với vận tốc 600km/h. Đường bay tạo với phương nằm ngang một góc 30 độ. Hỏi sau 1,5 phút máy bay lên cao được bao nhiêu kilômét theo phương thẳng đứng?
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Phú Thọ
Thứ … ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Phú Thọ tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Phú Thọ gồm có 02 trang với 10 câu trắc nghiệm và 04 câu tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Phú Thọ : + Cho hình vuông ABCD nội tiếp đường tròn tâm O. Gọi M, N lần lượt là trung điểm BC, CD. Đường thẳng AM, BN cắt đường tròn lần lượt là E, F (như hình vẽ bên). Số đo góc EDF bằng? + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Tia phân giác góc BAC cắt cạnh BC tại D và cắt đường tròn (O) tại M. Gọi K là hình chiếu của M trên AB. T là hình chiếu của M trên AC. Chứng minh rằng: a. AKMT là tứ giác nội tiếp. b. MB^2 = MC^2 = MD.MA. c. Khi đường tròn (O) và B; C cố định, điểm A thay đổi trên cung lớn BC thì tổng AB/MK + AC/MT có giá trị không đổi. [ads] + Cho phương trình: x2 – 2mx + m – 1 = 0 (m là tham số). a. Giải phương trình khi m = 2. b. Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m. c. Gọi x1; x2 là hai nghiệm của phương trình. Tìm m để x1^2.x2 + mx2 – x1 = 4.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Nam Định
Thứ … ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Nam Định tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Nam Định gồm có 02 trang với 08 câu trắc nghiệm và 05 câu tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Nam Định : + Cho tam giác nhọn ABC nội tiếp đường tròn (O;R). Hai đường cao BD, CE của tam giác ABC cắt nhau tại H. Các tia BD, CE cắt đường tròn (O;R) lần lượt tại điểm thứ hai là P, Q. 1) Chứng minh rằng tứ giác BCDE nội tiếp và cung AP bằng cung AQ. 2) Chứng minh E là trung điểm của HQ và OA ⊥ DE. 3) Cho góc CAB bằng 60 độ, R = 6cm. Tính bán kính đường tròn ngoại tiếp tam giác AED. [ads] + Cho đường tròn (O;5cm) và đường tròn (O’;7cm), biết OO’ = 2cm. Vị trí tương đối của hai đường tròn đó là: A. Cắt nhau. B. Tiếp xúc trong. C. Tiếp xúc ngoài. D. Đựng nhau. + Diện tích xung quanh hình trụ có bán kính đáy 5 cm, chiều cao 2 cm là?
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Đồng Nai
Thứ … ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Đồng Nai tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Đồng Nai gồm có 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Đồng Nai : + Một hình cầu có thể tích bằng 288π (cm3). Tính diện tích mặt cầu. + Một nhóm học sinh được giao xếp 270 quyển sách vào tủ ở thư viện trong một thời gian nhất định. Khi bắt đầu làm việc nhóm được bổ sung thêm học sinh nên mỗi giờ nhóm sắp xếp nhiều hơn dự định 20 quyển sách, vì vậy không những hoàn thành trước dự định 1 giờ mà còn vượt mức được giao 10 quyển sách. Hỏi số quyển sách mỗi giờ nhóm dự định xếp là bao nhiêu. [ads] + Cho tam giác nhọn ABC nội tiếp đường tròn (O) có hai đường cao BE, CF cắt nhau tại trực tâm H, AB<AC. Vẽ đường kính AD của (O). Gọi K là giao điểm của đường thẳng AH với (O), K khác A. Gọi L, P lần lượt là giao điểm của hai đường thẳng BC và EF, AC và KD. 1.Chứng minh tứ giác EHKP nội tiếp đường tròn và tâm I của đường tròn này thuộc đường thẳng BC. 2.Gọi M là trung điểm của đoạn BC. Chứng minh AH = 2OM. 3. Gọi T là giao điểm của đường tròn (O) với đường tròn ngoại tiếp tam giác EFK, T khác K. Chứng minh rằng ba điểm L, K, T thẳng hàng.