Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp giải nhanh hình không gian - Trần Duy Thúc

Tài liệu gồm 77 trang gồm lý thuyết, công thức và hướng dẫn phương pháp giải nhanh bài toán hình học không gian thông qua các ví dụ điển hình có lời giải chi tiết. Lời giới thiệu của tác giả : Câu hình học không gian là một nội dung quan trọng trong đề thi của Bộ Giáo Dục và Đào Tạo. Câu này không quá khó. Tuy nhiên nhiều Em học sinh cũng lúng túng khi gặp phần này. Đặc biệt là khi các Em tính khoảng cách hay ý sau của bài toán. Với mục tiêu có thể giúp Em cảm thấy nhẹ nhàng với hình học không gian và có thể lấy được trọn điểm câu này. Thầy biên soạn một quyển tài liệu PHƯƠNG PHÁP GIẢI NHANH HÌNH KHÔNG GIAN gửi đến các Em. Với cách hệ thống lý thuyết và các ví dụ được xây dựng từ cái góc của vấn đề, nâng dần đến giải quyết các vấn đề tổng quát. Thầy tin rằng có thể mang đến cho các Em một cái nhìn hết sức rõ ràng về hình không gian và có được sự tự tin về hình học không gian. [ads] Để thuận lợi cho việc đọc tài liệu Thầy chia ra thành 3 chương: + Chương 1. Tóm tắt lý thuyết quan trọng + Chương 2. Phân dạng các bài toán khoảng cách + Chương 3. Thể tích và các bài toán liên quan Bạn đọc có thể xem thêm tài liệu Các dạng bài tập trắc nghiệm hình học không gian – Trần Duy Thúc để vận dụng các kiến thức học được trong chuyên đề này.

Nguồn: toanmath.com

Đọc Sách

Bài tập nâng cao chuyên đề hình học không gian
Tài liệu gồm 94 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tuyển tập 99 bài tập nâng cao chuyên đề hình học không gian, có đáp án và lời giải chi tiết, dành cho giáo viên và học sinh ôn thi học sinh giỏi, học sinh năng khiếu và chuyên Toán. Trích dẫn Bài tập nâng cao chuyên đề hình học không gian : + Cho tứ diện đều ABCD có cạnh bằng 1, hai điểm M và N lần lượt nằm trên các đoạn AB và CD, sao cho BN DN. a) Chứng minh rằng AD BC. Tìm điểm I cách đều 4 đỉnh của tứ diện ABCD b) Khi M, N lần lượt là trung điểm của AB và CD, gọi là mặt phẳng chứa BN và song song với MC. Tính chu vi thiết diện tạo bởi và tứ diện ABCD c) Tìm giá trị lớn nhất và giá trị nhỏ nhất của MN khi M, N thay đổi trên các đoạn AB và C D. + Cho hình hộp ABCD A B C D. Trên cạnh AB lấy điểm M khác A và B.Gọi (P) là mặt phẳng đi qua M và song song với mặt phẳng ACD a) Trình bày cách dựng thiết diện của hình hộp và mặt phẳng (P). b) Xác định vị trí của M để thiết diện nói trên có diện tích lớn nhất. + Cho lăng trụ tam giác ABC A B C. Trên tia đối của tia AB lấy điểm M sao cho AM = 1 2 AB. Gọi E là trung điểm của CA. a) Xác định thiết diện của lăng trụ cắt bởi mặt phẳng (MEB’) b) Gọi D = BC (MEB’) K = AA’ (MEB’). Tính tỷ số CB CD và AA’.
Chủ đề khối đa diện và thể tích khối đa diện ôn thi tốt nghiệp THPT môn Toán
Tài liệu gồm 374 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp lý thuyết trọng tâm, ví dụ minh họa và các dạng bài tập chủ đề khối đa diện và thể tích khối đa diện ôn thi tốt nghiệp THPT môn Toán, có đáp án và lời giải chi tiết. DẠNG 1 Mở đầu về khối đa diện. DẠNG 2 Thể tích khối lăng trụ đứng. DẠNG 3 Thể tích khối chóp có cạnh bên vuông góc với đáy. DẠNG 4 Thể tích khối chóp có mặt bên vuông góc với đáy. DẠNG 5 Thể tích khối chóp đều. DẠNG 6 Thể tích khối tứ diện đặc biệt. DẠNG 7 Tỷ số thể tích. DẠNG 8 Các bài toán thể tích chọn lọc. DẠNG 9 Bài toán về khoảng cách và góc. DẠNG 10 Cực trị khối đa diện. DẠNG 11 Khối đa diện trong đề thi của Bộ Giáo dục và Đào tạo.
Bài toán cực trị hình học không gian
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán cực trị hình học không gian, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 1. I. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI 1. PHƯƠNG PHÁP GIẢI Áp dụng các phương pháp tính thể tích thông qua tam giác vuông; các loại góc và khoảng cách trong không gian cũng như các công thức tính thể tích khối chóp, khối lăng trụ. Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức chứa biến. + Cách 1. Áp dụng bất đẳng thức AM – GM cho các số thực dương. + Cách 2. Khảo sát hàm số f(x) trên khoảng xác định (đạo hàm – lập bảng biến thiên). 2. CÁC VÍ DỤ MINH HỌA II. BÀI TẬP TỰ LUYỆN
Toàn tập thể tích khối đa diện vận dụng cao
Tài liệu gồm 92 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển tập hệ thống bài tập trắc nghiệm chuyên đề thể tích khối đa diện vận dụng cao (VDC) lớp 12 THPT. Vận dụng cao thể tích khối đa diện đặc biệt – (phần 1). Vận dụng cao thể tích khối đa diện đặc biệt – (phần 2). Vận dụng cao bài toán thể tích khối đa diện – (phần 1). Vận dụng cao bài toán thể tích khối đa diện – (phần 2). Vận dụng cao bài toán thể tích khối đa diện – (phần 3). Vận dụng cao cực trị thể tích khối đa diện – (phần 1). Vận dụng cao cực trị thể tích khối đa diện – (phần 2). Vận dụng cao cực trị thể tích khối đa diện – (phần 3). Vận dụng cao cực trị thể tích khối đa diện – (phần 4). Vận dụng cao cực trị thể tích khối đa diện – (phần 5). Vận dụng cao cực trị thể tích khối đa diện – (phần 6). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 1). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 2). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 3). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 4). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 5). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 6). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 7). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 8). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 9). Vận dụng cao hỗn hợp góc, thể tích, khoảng cách – (phần 10). Vận dụng cao tỉ số thể tích khối chóp tam giác – (phần 1). Vận dụng cao tỉ số thể tích khối chóp tam giác – (phần 2). Vận dụng cao tỉ số thể tích khối chóp tam giác – (phần 3). Vận dụng cao tỉ số thể tích khối chóp tam giác – (phần 4). Vận dụng cao tỉ số thể tích khối chóp tam giác – (phần 5). Vận dụng cao tỉ số thể tích khối chóp tứ giác – (phần 1). Vận dụng cao tỉ số thể tích khối chóp tứ giác – (phần 2). Vận dụng cao tỉ số thể tích khối chóp tứ giác – (phần 3). Vận dụng cao tỉ số thể tích khối chóp tứ giác – (phần 4). Vận dụng cao tỉ số thể tích khối hộp – (phần 1). Vận dụng cao tỉ số thể tích khối hộp – (phần 2). Vận dụng cao tỉ số thể tích khối hộp – (phần 3). Vận dụng cao tỉ số thể tích khối lăng trụ – (phần 1). Vận dụng cao tỉ số thể tích khối lăng trụ – (phần 2). Vận dụng cao tỉ số thể tích khối lăng trụ – (phần 3). Vận dụng cao tỉ số thể tích khối lăng trụ – (phần 4). Vận dụng cao tỉ số thể tích khối lăng trụ – (phần 5). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 1). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 2). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 3). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 4). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 5). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 6). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 7). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 8). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 9). Vận dụng cao bài toán tổng hợp tỉ số thể tích – (phần 10). Xem thêm : Toàn tập thể tích khối đa diện cơ bản