Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Olympic Toán 11 năm 2017 - 2018 cụm trường Thanh Xuân Cầu Giấy - Hà Nội

Đề thi Olympic Toán 11 năm 2017 – 2018 cụm trường Thanh Xuân & Cầu Giấy – Hà Nội gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 150 phút, đề thi nhằm tuyển chọn các em học sinh giỏi môn Toán khối 11, đề thi có lời giải chi tiết . Trích dẫn đề thi Olympic Toán 11 năm 2017 – 2018 : + Một đoàn tàu có 6 toa ở sân ga, trên sân ga có 6 hành khách chuẩn bị lên tàu, mỗi người độc lập với nhau và chọn toa tàu một cách ngẫu nhiên. a. Hỏi có bao nhiêu cách xếp 6 hành khách lên các toa tàu đó sao cho 6 người cùng lên một toa hoặc mỗi người lên một toa khác nhau? b. Tính xác suất sao cho một toa có 3 hành khách, một toa có 2 hành khách, 1 toa có 1 hành khách, còn 3 toa còn lại không có ai lên. [ads] + Biết rằng các số x, 2y – x, x + 2y theo thứ tự lập thành cấp số cộng. Đồng thời các số 1, y – 1, x + 2y – 1 theo thứ tự lập thành cấp số nhân. Hãy tìm x, y. + Xét khai triển (x + 1/x)^n (x ≠ 0, n ≥ 3, n ∈ N*). Biết tích của số hạng thứ tư tính từ phải sang và số hạng thứ tư kể từ trái sang bằng 14400. Tìm n.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG lớp 11 môn Toán năm 2018 – 2019 trường THPT Thị xã Quảng Trị
Nội dung Đề thi chọn HSG lớp 11 môn Toán năm 2018 – 2019 trường THPT Thị xã Quảng Trị Bản PDF Ngày 03 tháng 04 năm 2019, trường THPT Thị xã Quảng Trị (146 Hai Bà Trưng, Thị xã Quảng Trị, tỉnh Quảng Trị) tổ chức kỳ thi năm học sinh giỏi văn hóa môn Toán lớp 11 năm học 2018 – 2019, những em được chọn sẽ được đưa vào đội tuyển học sinh giỏi Toán lớp 11 của nhà trường để tiếp tục được bồi dưỡng, đồng thời được tuyên dương và khen thưởng, nhằm tạo động lực và nâng cao chất lượng học tập. Đề thi chọn HSG Toán lớp 11 năm 2018 – 2019 trường THPT Thị xã Quảng Trị được biên soạn theo hình thức tự luận, đề gồm 01 trang với 06 bài toán, bài thi có thang điểm 20, học sinh làm bài thi trong thời gian 180 phút, đề thi có lời giải chi tiết. [ads] Trích dẫn đề thi chọn HSG Toán lớp 11 năm 2018 – 2019 trường THPT Thị xã Quảng Trị : + Cho x1 và x2 là hai nghiệm của phương trình: x^2 – 3x + a = 0, x3 và x4 là hai nghiệm của phương trình: x^2 – 12x + b = 0. Biết rằng x1, x2, x3, x4 theo thứ tự lập thành một cấp số nhân. Hãy tìm a, b. + Cho tứ diện ABCD có tam giác ABC đều cạnh bằng a và tam giác BCD cân tại D với DC = a√5/2. 1. Chứng minh rằng: AD vuông góc BC. 2. Gọi G là trọng tâm tam giác BCD, tính cosin góc giữa hai đường thẳng AG và CD, biết góc giữa hai mặt phẳng (ABC) và (BCD) bằng 30 độ. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(2;1), B(1; 2), trọng tâm G của tam giác nằm trên đường thẳng x + y – 2 = 0. Tìm tọa độ đỉnh C biết diện tích tam giác ABC bằng 27/2. File WORD (dành cho quý thầy, cô):
Đề thi chọn HSG Toán THPT cấp tỉnh năm học 2018 2019 sở GD ĐT Phú Yên
Nội dung Đề thi chọn HSG Toán THPT cấp tỉnh năm học 2018 2019 sở GD ĐT Phú Yên Bản PDF Thứ Năm ngày 28 tháng 03 năm 2019, sở Giáo dục và Đào tạo tỉnh Phú Yên tổ chức kỳ thi chọn học sinh giỏi THPT cấp tỉnh môn Toán năm học 2018 – 2019. Đề thi chọn HSG Toán THPT cấp tỉnh năm học 2018 – 2019 sở GD&ĐT Phú Yên được biên soạn theo dạng tự luận với 06 bài toán, đề có thang điểm 20, thời gian thí sinh làm bài là 180 phút (không kể thời gian giám thị coi thi phát đề). Trích dẫn đề thi chọn HSG Toán THPT cấp tỉnh năm học 2018 – 2019 sở GD&ĐT Phú Yên : + Cho bốn số thực p, q, m, n thỏa mãn hệ thức: (q – n)^2 + (p – m)(pn – qm) < 0. Chứng minh rằng hai phương trình: x^2 + px + q = 0 và x^2 + mx + n = 0 đều có các nghiệm phân biệt và các nghiệm của chúng nằm xen kẽ nhau khi biểu diễn trên trục số. [ads] + Cho tam giác ABC có các cạnh BC = a, AC = b, AB = c. Gọi I là tâm đường tròn nội tiếp tam giác. a) Chứng minh rằng a.IA^2 + b.IB^2 + c.IC^2 = abc. b) Chứng minh rằng √a(bc – IA^2) + √(b(ca – IB^2) + √c(ab – IC^2) ≤ 6√abc. Hãy chỉ ra một trường hợp xảy ra dấu đẳng thức. + Cho x, y, z là 3 số thực thỏa mãn x^2 + y^2 + z^2 = 1. a) Tìm giá trị nhỏ nhất của biểu thức P = xy + yz + 2019zx. b) Tìm giá trị lớn nhất của biểu thức Q = xy + yz + 2zx.
Đề thi học sinh giỏi cấp tỉnh lớp 11 môn Toán năm 2018 2019 sở GD ĐT Quảng Ngãi
Nội dung Đề thi học sinh giỏi cấp tỉnh lớp 11 môn Toán năm 2018 2019 sở GD ĐT Quảng Ngãi Bản PDF Sáng thứ Sáu ngày 29 tháng 03 năm 2019, sở Giáo dục và Đào tạo Quảng Ngãi tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh Toán lớp 11 năm 2018 – 2019, đề thi được biên soạn theo hình thức tự luận với 06 bài toán, thời gian học sinh làm bài là 180 phút. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán lớp 11 năm 2018 – 2019 sở GD&ĐT Quảng Ngãi : + Gọi S là tập hợp tất cả các số tự nhiên gồm năm chữ số được chọn từ các chữ số 1; 2; 3; 4; 5; 6; 7. Chọn ngẫu nhiên một số từ S, tính xác suất để số được chọn có mặt đúng ba chữ số khác nhau. [ads] + Cho hình chóp S.ABCD có đáy là hình chữ nhật, AD = 2a, AB = a; O là giao điểm của AC với BD, SO vuông góc với mặt phẳng (ABCD) và SO = 4. Gọi M là trung điểm của BC. a. Chứng minh đường thẳng SM vuông góc với mặt phẳng (SAD). b. Gọi φ là góc giữa đường thẳng SC và mặt phẳng (SAD), tính sinφ. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông tại A, có đỉnh B(-3;2), đường phân giác trong góc A có phương trình x + y – 7 = 0. Viết phương trình đường tròn nội tiếp tam giác ABC, biết diện tích tam giác ABC bằng 24 và A có hoành độ dương.
Đề thi học sinh giỏi cấp tỉnh lớp 11 môn Toán THPT năm 2018 2019 sở GD ĐT Thanh Hóa
Nội dung Đề thi học sinh giỏi cấp tỉnh lớp 11 môn Toán THPT năm 2018 2019 sở GD ĐT Thanh Hóa Bản PDF Thứ Năm ngày 21 tháng 03 năm 2019, sở Giáo dục và Đào tạo tỉnh Thanh Hóa tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 11 hệ THPT năm học 2018 – 2019. Đề thi học sinh giỏi cấp tỉnh Toán lớp 11 THPT năm 2018 – 2019 sở GD&ĐT Thanh Hóa được biên soạn theo hình thức tự luận với 05 bài toán, thí sinh có 180 phút để hoàn thành bài thi, không kể thời gian giám thị coi thi phát đề, lời giải chi tiết của đề được biên soạn bởi thầy Nguyễn Xuân Chung, giáo viên Toán trường THPT Lê Lai – Ngọc Lặc – Thanh Hóa. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán lớp 11 THPT năm 2018 – 2019 sở GD&ĐT Thanh Hóa : + Có bao nhiêu số tự nhiên có 8 chữ số khác nhau mà có mặt hai chữ lẻ và ba chữ số chẵn, trong đó mỗi chữ số chẵn có mặt đúng hai lần?. [ads] + Trong hệ tọa độ Oxy, cho tam giác ABC nội tiếp đường tròn (C) tâm I, trọng tâm G(8/3;0), các điểm M(0;1), N(4;1) lần lượt đối xứng với I qua AB và AC, điểm K(2;-1) thuộc đường thẳng BC. Viết phương trình đường tròn (C). + Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Một mặt phẳng không qua S cắt các cạnh SA, SB, SC, SD lần lượt tại M, N, P, Q thỏa mãn các hệ thức vectơ: SA = 2SM, SC = 3SP. Tính tỉ số SB/SN khi biểu thức T = (SB/SN)^2 + 4(SD/SQ)^2 đạt giá trị nhỏ nhất.