Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra chất lượng lớp 11 môn Toán lần 2 năm 2019 2020 trường THPT Lý Thái Tổ Bắc Ninh

Nội dung Đề kiểm tra chất lượng lớp 11 môn Toán lần 2 năm 2019 2020 trường THPT Lý Thái Tổ Bắc Ninh Bản PDF Thứ Bảy ngày 30 tháng 06 năm 2020, trường THPT Lý Thái Tổ, thị xã Từ Sơn, tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra chất lượng môn Toán đối với học sinh lớp 11 lần thứ hai năm học 2019 – 2020. Đề kiểm tra chất lượng Toán lớp 11 lần 2 năm 2019 – 2020 trường THPT Lý Thái Tổ – Bắc Ninh gồm 05 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 132, 209, 357, 485, 570, 628, 743, 896. Trích dẫn đề kiểm tra chất lượng Toán lớp 11 lần 2 năm 2019 – 2020 trường THPT Lý Thái Tổ – Bắc Ninh : + Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, với AB = 2a, AD = CD = a. Cạnh bên SA vuông góc với đáy và SA = 2a. Gọi M là điểm thuộc cạnh AB sao cho AB = 4AM và (x) là mặt phẳng đi qua M, vuông góc với cạnh CD. Tính diện tích thiết diện của hình chóp S.ABCD với mặt phẳng (x). [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, biết AB = 2a, AD = a, SA = 3a và SA vuông góc với mặt phẳng đáy. Gọi M là trung điểm của CD, điểm E thuộc cạnh SA sao cho SE = 2a. Cosin góc giữa hai mặt phẳng (SAC) và (BME). + Cho hàm số f(x) có đạo hàm trên R và có đồ thị như hình vẽ. Biết rằng tại các điểm A, B, C đồ thị hàm số có tiếp tuyến được thể hiện như trong hình. Chọn khẳng định đúng trong các khẳng định sau? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra chất lượng Toán 11 lần 1 năm học 2017 - 2018 trường THPT Hàn Thuyên - Bắc Ninh
Đề kiểm tra chất lượng Toán 11 lần 1 năm học 2017 – 2018 trường THPT Hàn Thuyên – Bắc Ninh gồm 5 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án .
Đề khảo sát chất lượng lần 1 năm học 2017 - 2018 môn Toán 11 trường THPT Đồng Đậu - Vĩnh Phúc
Đề khảo sát chất lượng lần 1 năm học 2017 – 2018 môn Toán 11 trường THPT Đồng Đậu – Vĩnh Phúc gồm 1 trang với 10 bài toán tự luận, mỗi câu tương ứng với 1 điểm, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Hàng ngày mực nước của con kênh lên xuống theo thủy triều. Độ sâu h (mét) của mực nước trong kênh được tính tại thời điểm t (giờ) trong 1 ngày bởi công thức h = 3cos(πt/8 + π/4) + 12 (0 < t ≤ 24). Hỏi mực nước biển cao nhất tại thời điểm nào? [ads] + Trong mặt phẳng tọa độ Oxy cho tam giác ABC có trọng tâm G(4/3; 1), trung điểm BC là M(1; 1), đường cao kẻ từ B thuộc đường thẳng có phương trình x + y – 7 = 0. Hãy xác định tọa độ các đỉnh A, B, C. + Trong mặt phẳng tọa độ Oxy, cho đường hai thẳng d: x – 2y + 6 = 0 và d’: x – 2y + 13 = 0. Tìm tọa độ vectơ v, biết |v| = √10, d’ là ảnh của d qua phép tịnh tiến theo vectơ v và vectơ v có hoành độ là số nguyên.
Khảo sát chuyên đề Toán 11 lần 1 năm học 2017 - 2018 trường Nguyễn Thị Giang - Vĩnh Phúc
Đề thi khảo sát chuyên đề Toán 11 lần 1 năm học 2017 – 2018 trường THPT Nguyễn Thị Giang – Vĩnh Phúc gồm 6 mã đề, mỗi mã đề gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, tất cả các mã đề đều có đáp án . Trích dẫn đề thi : + Trong những khẳng định sau đây, khẳng định nào sai? A. Hàm số y = cotx nghịch biến trên khoảng (0; π/2) B. Hàm số y = sinx là hàm tuần hoàn với chu kì 2π C. Hàm số y = cos(x^3) là hàm số chẵn D. Hàm số y = tanx đồng biến trên khoảng (0; π) [ads] + Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d: 2x – y + 1 = 0 và véctơ v = (2; -3). Phép tịnh tiến theo véctơ v biến d thành d’. Phương trình đường thẳng d’ là: A. 2x – 3y + 1 = 0 B. 2x – y – 7 = 0 C. 2x – y + 6 = 0 D. 2x – y – 6 = 0 + Để có được đồ thị hàm số y = cosx, ta thực hiện phép tịnh tiến đồ thị hàm số y = sinx: A. Sang phải π đơn vị B. Sang trái 2π đơn vị C. Sang phải 2π đơn vị D. Sang trái π đơn vị
Đề kiểm tra chất lượng lần 1 năm học 2017 - 2018 môn Toán 11 trường THPT chuyên Thái Bình
Đề kiểm tra chất lượng lần 1 năm học 2017 – 2018 môn Toán 11 trường THPT chuyên Thái Bình gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + 3: Xét các mệnh đề sau đây: (I): Có một và chỉ một mặt phẳng đi qua ba điểm phân biệt (II): Có một và chỉ một mặt phẳng chứa hai đường thẳng cắt nhau (III): Nếu hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất đi qua điểm chung đó (IV): Tồn tại bốn điểm không cùng thuộc một mặt phẳng Số mệnh đề đúng là: A. 2 B. 1 C. 3 D. 4 [ads] + Xét các mệnh đề sau đây: (I): Hai đường thẳng lần lượt nằm trên hai mặt phẳng song song thì song song (II): Hai đường thẳng lần lượt nằm trên hai mặt phẳng song song thì chéo nhau (III): Một đường thẳng bất kì nằm trên một trong hai mặt phẳng song song thì song song với mặt phẳng còn lại (IV): Bất kì một đường thẳng nào cắt một trong hai mặt phẳng song song thì nó cũng cắt mặt phẳng còn lại Số mệnh đề sai là: A. 0 B. 2 C. 3 D. 1 + Trong không gian cho ba đường thẳng a, b, c phân biệt. Trong các mệnh đề sau đây, mệnh đề nào sai? A. Nếu a, b, c đồng phẳng, a // b và c cắt a thì c cắt b B. Nếu a, b, c đôi một cắt nhau thì chúng đồng phẳng C. Nếu a // b thì có duy nhất một mặt phẳng chứa cả a và b D. Nếu a // c và b // c thì a // b