Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán 9 vòng 2 năm 2022 - 2023 trường THCS Nguyễn Tri Phương - TT Huế

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 vòng 2 năm học 2022 – 2023 trường THCS Nguyễn Tri Phương, tỉnh Thừa Thiên Huế. Trích dẫn Đề HSG Toán 9 vòng 2 năm 2022 – 2023 trường THCS Nguyễn Tri Phương – TT Huế : + Chứng minh rằng không tồn tại cặp x nguyên, y nguyên nào thỏa mãn: 4x² + 9y² = 1987 + 13xy. Cho A là một số chính phương có 4 chữ số. Nếu cộng thêm vào mỗi chữ số của A với 3 ta được số chính phương B cũng có 4 chữ số. Tìm A, giải thích cách làm. + Cho đường tròn (O;R), lấy điểm A sao cho OA = 2R. Gọi B, C lần lượt là giao điểm của đường tròn (O) với đường tròn đường kính OA. Đường thẳng Ax không trùng AO cắt (O) tại D và E (AD < AE). Gọi F là trung điểm của DE. Chứng minh rằng: 5.1. FB + FC = FA. 5.2. Nếu FB < FC thì FB < BD. + Tam giác nhọn ABC có ABC = 60° nội tiếp đường tròn (O;R). Đường thẳng Ox vuông góc AO cắt AC, AB lần lượt tại D và E. 6.1. Chứng minh 4 điểm B, C, D, E cùng thuộc một đường tròn. 6.2. Tính bán kính đường tròn ngoại tiếp tam giác ODC theo R.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử HSG Toán 9 năm 2022 - 2023 trường THCS Lai Vu - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 trường THCS Lai Vu, huyện Kim Thành, tỉnh Hải Dương; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề thi thử HSG Toán 9 năm 2022 – 2023 trường THCS Lai Vu – Hải Dương : + Cho tam giác ABC vuông tại A, đường cao AH. Gọi D là trung điểm AH, BD cắt AC tại E. Kẻ HK song song với AE (K thuộc BE) a) Chứng minh cos2B = EA/EC. b) Gọi M là điểm đối xứng của A qua B, N thuộc tia đối của tia HA sao cho HN = 2HA. Gọi P là trung điểm của HN. Chứng minh MN vuông góc NC. + Cho tam giác ABC vuông tại A (AB < AC), các đường phân giác trong và ngoài tại đỉnh A của tam giác cắt BC lần lượt tại M, N. Chứng minh 1 1 1 AM AN AB. + Cho các số nguyên dương a, b thỏa mãn: (a – 2021)(b + 2021) = 4 và ba số thực dương x; y; z sao cho xyz = 1. Chứng minh rằng?
Đề thi thử học sinh giỏi huyện Toán 9 năm 2022 - 2023 THCS Lăng Thành - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử kỳ thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 trường THCS Lăng Thành, tỉnh Nghệ An. Trích dẫn đề thi thử học sinh giỏi huyện Toán 9 năm 2022 – 2023 THCS Lăng Thành – Nghệ An : + Tìm số tự nhiên n để A = 2n + 3n + 4n là một số chính phương. + Cho a, b là các số hữu tỉ thỏa mãn a + b và a.b đều là số nguyên. Chứng minh a và b đều là số nguyên. + Cho đường tròn (O) đường kính AB và điểm C nằm bên ngoài đường tròn sao cho CA và CB lần lượt cắt đường tròn (O) tại điểm thứ hai là D và E. AE cắt BD tại H và CH cắt AB tại F. Chứng minh: a) CED = CAB b) AD.AC = AF.AB c) HE HD HF.