Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lý thuyết và các dạng bài tập môn Toán 12 - Lê Doãn Thịnh

Tài liệu gồm 264 trang, được sưu tầm và biên soạn bởi thầy giáo Lê Doãn Thịnh (trung tâm GDNN – GDTX TP Thuận An, tỉnh Bình Dương), bao gồm tóm tắt lý thuyết và các dạng bài tập môn Toán 12. PHẦN I GIẢI TÍCH 3. CHƯƠNG 1 ỨNG DỤNG ĐẠO HÀM. KHẢO SÁT HÀM SỐ 5. 1 SỰ ĐỒNG BIẾN – NGHỊCH BIẾN CỦA HÀM SỐ 5. + Dạng 1. Xét tính đơn điệu của hàm số cho bởi biểu thức. + Dạng 2. Tìm tham số m để hàm bậc ba, hàm nhất biến đơn điệu trên tập xác định hoặc từng khoảng xác định. + Dạng 3. Tìm tham số m để hàm số y = (ax + b)/(cx + d) đơn điệu trên một khoảng (m;n). + Dạng 4. Hàm số bậc ba y = ax3 + bx2 + cx + d (a khác 0) đơn điệu trên khoảng (a;b). 2 CỰC TRỊ CỦA HÀM SỐ 19. + Dạng 1. Tìm cực trị của hàm số cho bởi biểu thức. + Dạng 2. Tìm cực trị của hàm số biết bảng biến thiên hoặc đồ thị. + Dạng 3. Tìm m để hàm số y = f (x) đạt cực trị tại điểm x0. + Dạng 4. Tìm m để hàm số có n cực trị. 3 GIÁ TRỊ LỚN NHẤT – GIÁ TRỊ NHỎ NHẤT 36. 4 ĐƯỜNG TIỆM CẬN CỦA HÀM SỐ 42. + Dạng 1. Xác định các đường tiệm cận của hàm phân thức. + Dạng 2. Đọc phương trình đường tiệm cận đứng, ngang của đồ thị hàm số từ bảng biến thiên. 5 KHẢO SÁT SỰ BIẾN THIÊN VÀ VẼ ĐỒ THỊ HÀM SỐ 49. + Dạng 1. Khảo sát và vẽ đồ thị các hàm số thường gặp. + Dạng 2. Tiếp tuyến của đồ thị hàm số y = f(x) tại điểm M(x0; y0). + Dạng 3. Tiếp tuyến của đồ thị (C) biết hệ số góc của tiếp tuyến bằng k. + Dạng 4. Tiếp tuyến của đồ thị (C) biết tiếp tuyến song song với đường thẳng d: y = ax + b. + Dạng 5. Tiếp tuyến của đồ thị (C) biết tiếp tuyến vuông góc với đường thẳng d: y = ax + b. CHƯƠNG 2 HÀM SỐ LŨY THỪA. HÀM SỐ MŨ – HÀM SỐ LOGARIT 73. 1 LŨY THỪA 73. + Dạng 1. Rút gọn và tính giá trị biểu thức chứa lũy thừa. + Dạng 2. So sánh các biểu thức chứa lũy thừa. 2 HÀM SỐ LŨY THỪA 77. + Dạng 1. Tìm tập xác định của hàm số lũy thừa. + Dạng 2. Đạo hàm của hàm số lũy thừa. + Dạng 3. Tính chất, đồ thị của hàm số lũy thừa. 3 LOGARIT 83. + Dạng 1. Tính giá trị của biểu thức chứa logarit. + Dạng 2. Biểu diễn logarit theo các tham số. 4 HÀM SỐ MŨ – HÀM SỐ LOGARIT 88. + Dạng 1. Tập xác định của hàm số mũ và hàm số logarit. + Dạng 2. Các bài toán liên quan đến đạo hàm hàm số mũ và hàm số logarit. + Dạng 3. Max-min của hàm số mũ và hàm số logarit. + Dạng 4. Bài toán thực tế. 5 PHƯƠNG TRÌNH MŨ – PHƯƠNG TRÌNH LOGARIT 97. + Dạng 1. Đưa về phương trình mũ cơ bản. + Dạng 2. Đưa về cùng cơ số. + Dạng 3. Phương pháp lô-ga-rít hóa. + Dạng 4. Đặt một ẩn phụ. + Dạng 5. Đặt ẩn phụ với phương trình đẳng cấp. + Dạng 6. Đặt ẩn phu khi tích hai cơ số bằng 1. + Dạng 7. Phương trình logarit cơ bản. + Dạng 8. Phương pháp đưa về cùng cơ số. + Dạng 9. Đặt một ẩn phụ. 6 BẤT PHƯƠNG TRÌNH MŨ – BẤT PHƯƠNG TRÌNH LOGARIT 106. + Dạng 1. Bất phương trình mũ cơ bản. + Dạng 2. Phương pháp đưa về cùng cơ số. + Dạng 3. Bất phương trình mũ bằng phương pháp đặt ẩn phụ. + Dạng 4. Phân tích thành nhân tử. + Dạng 5. Giải bất phương trình logagit dạng cơ bản. + Dạng 6. Giải bất phương trình logagit bằng cách đưa về cùng cơ số. + Dạng 7. Phương pháp đặt ẩn phụ trong bất phương trình logarit. CHƯƠNG 3 NGUYÊN HÀM – TÍCH PHÂN – ỨNG DỤNG 115. 1 NGUYÊN HÀM 115. + Dạng 1. Tính nguyên hàm bằng bảng nguyên hàm. + Dạng 2. Tìm nguyên hàm bằng phương pháp đổi biến số. + Dạng 3. Nguyên hàm từng phần. 2 TÍCH PHÂN 129. + Dạng 1. Tích phân cơ bản và tính chất tính phân. + Dạng 2. Tích phân hàm số phân thức hữu tỉ. + Dạng 3. Tính chất của tích phân. + Dạng 4. Tích phân sử dụng phương pháp đổi biến. + Dạng 5. Tích phân sử dụng phương pháp đổi biến. + Dạng 6. Đổi biến biểu thức chứa ln, ex hoặc lượng giác trong dấu căn. + Dạng 7. Đổi biến biểu thức chứa hàm ln không nằm trong căn. + Dạng 8. Tính Zba f(sinx)cosxdx hoặc I = Zba f(cosx)sinxdx. + Dạng 9. Tính I = Zba f(tanx)1cos2xdx hoặc I = Zba f(cotx)1sin2xdx. + Dạng 10. Phương pháp từng phần. 3 ỨNG DỤNG TÍCH PHÂN 144. CHƯƠNG 4 SỐ PHỨC 155. 1 SỐ PHỨC – CÁC PHÉP TOÁN TRÊN SỐ PHỨC 155. 2 PHƯƠNG TRÌNH BẬC HAI HỆ SỐ THỰC 164. PHẦN II HÌNH HỌC 169. CHƯƠNG 1 KHỐI ĐA DIỆN 171. 1 KHÁI NIỆM VỀ HÌNH ĐA DIỆN VÀ KHỐI ĐA DIỆN 171. 2 KHỐI ĐA DIỆN LỒI, KHỐI ĐA DIỆN ĐỀU 175. 3 THỂ TÍCH KHỐI ĐA DIỆN 180. CHƯƠNG 2 MẶT NÓN – MẶT TRỤ – MẶT CẦU 199. 1 KHÁI NIỆM VỀ MẶT TRÒN XOAY 199. 2 MẶT CẦU 207. CHƯƠNG 3 PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN 215. 1 HỆ TỌA ĐỘ TRONG KHÔNG GIAN 215. 2 PHƯƠNG TRÌNH MẶT PHẲNG 228. + Dạng 1. Viết phương trình mặt phẳng trung trực của đoạn thẳng AB cho trước. + Dạng 2. Viết phương trình mặt phẳng đi qua một điểm và có cặp véc-tơ chỉ phương cho trước. + Dạng 3. Viết phương trình mặt phẳng (P) đi qua M và vuông góc với đường thẳng d đi qua hai điểm A và B. + Dạng 4. Viết phương trình mặt phẳng (P) đi qua A, B và vuông góc với mặt phẳng (Q). + Dạng 5. Viết phương trình mặt phẳng (P) đi qua điểm M và chứa đường thẳng ∆. + Dạng 6. Viết phương trình mặt phẳng (P) chứa hai đường thẳng song song ∆1 và ∆2. + Dạng 7. Viết phương trình mặt phẳng (P) chứa hai đường thẳng cắt nhau ∆1 và ∆2. + Dạng 8. Viết phương trình mặt phẳng (P) chứa đường thẳng ∆1 và song song với đường thẳng ∆2 với ∆1 và ∆2 chéo nhau. + Dạng 9. Viết phương trình mặt phẳng (P) đi qua M, đồng thời vuông góc với hai mặt phẳng (α) và (β). 3 PHƯƠNG TRÌNH ĐƯỜNG THẲNG TRONG KHÔNG GIAN 240. + Dạng 1. Tìm vec-tơ chỉ phương, điểm thuộc đường thẳng. + Dạng 2. Đường thẳng đi qua một điểm và véc-tơ chỉ phương cho trước. + Dạng 3. Đường thẳng d đi qua điểm M và song song với hai mặt phẳng cắt nhau (P) và (Q). + Dạng 4. Viết phương trình đường thẳng giao tuyến của hai mặt phẳng. + Dạng 5. Viết phương trình đường thẳng đi qua điểm M và vuông góc với hai đường thẳng cho trước. + Dạng 6. Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d1. + Dạng 7. Viết phương trình đường thẳng đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d2. + Dạng 8. Viết phương trình đường thẳng đi qua điểm A đồng thời cắt cả hai đường thẳng d1 và d2. + Dạng 9. Viết phương trình đường thẳng d nằm trong mặt phẳng (P) đồng thời cắt cả hai đường thẳng d1 và d2.

Nguồn: toanmath.com

Đọc Sách

Bài tập tỷ số thể tích khối đa diện - Lê Bá Bảo
Tài liệu gồm 15 trang trình bày phương pháp, ví dụ mẫu có lời giải chi tiết và bài tập rèn luyện về dạng toán tỷ số thể tích khối đa diện. Trích dẫn tài liệu : + Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M là trung điểm cạnh SA. Mặt phẳng (α) qua M và song song với (ABCD), cắt các cạnh SB, SC, SD lần lượt tại N, P, Q. Gọi V1 = VS.ABCD và V2 = VS.MNPQ. Khẳng định nào sau đây đúng? A. V1 = 8V2 B. V1 = 6V2 C. V1 = 16V2 D. V1 = 4V2 [ads] + Cho khối lăng trụ tam giác ABC.A’B’C’, đường thẳng đi qua trọng tâm tam giác ABC song song với BC cắt AB tại D, cắt AC tại E. Mặt phẳng đi qua A, D, E’ chia khối lăng trụ thành hai phần, tỉ số thể tích (số bé chia cho số lớn) của chúng bằng? + Cho tứ diện ABCD. Gọi B’ và C’ lần lượt là trung điểm của AB và AC. Khi đó tỉ số thể tích của khối tứ diện AB’C’D và khối tứ diện ABCD bằng?
86 bài tập trắc nghiệm thể tích khối chóp có đáp án - Bùi Thái Nam
Tài liệu gồm 9 trang với 86 bài toán trắc nghiệm thuộc chuyên đề thể tích khối chóp có đáp án. Trích dẫn tài liệu : + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 16 cm, AD = 30 cm và hình chiếu của S trên (ABCD) trùng với giao điểm hai đường chéo AC, BD. Biết rằng mặt phẳng (SCD) tạo với mặt đáy một góc φ sao cho cosφ = 5/13. Tính thể tích khối chóp S.ABCD. [ads] + Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB = AC = a. Hình chiếu vuông góc của S lên mặt phẳng (ABC) là trung điểm H của BC, mặt phẳng (SAB) tạo với đáy một góc bằng 60 độ. Thể tích khối chóp S.ABC là? + Cho hình chóp S.ABC có tam giác ABC vuông tại A , AB = AC = a, I là trung điểm của SC, hình chiếu vuông góc của S lên mặt phẳng ( ABC) là trung điểm H của BC, mặt phẳng (SAB) tạo với đáy 1 góc bằng 60 độ. Thể tích khối chóp S.ABC là?
Bài tập trắc nghiệm thể tích khối đa diện và khoảng cách có lời giải chi tiết - Phạm Văn Huy
Tài liệu gồm 120 trang, với các bài toán trắc nghiệm thuộc chuyên đề thể tích khối đa diện và khoảng cách, các bài toán có đáp án và lời giải chi tiết. + Chủ đề 1. Thể tích (Gồm 113 bài toán) + Chủ đề 2. Khoảng cách (Gồm 31 bài toán) + Chủ đề 3. Mặt trụ – Hình trụ – Khối trụ (Gồm 40 bài toán) + Chủ đề 4. Mặt cầu – Hình cầu – Khối cầu (Gồm 44 bài toán) [ads] Trích dẫn tài liệu : + Cho hình chóp S.ABC có đáy ABC là tam giác cân tại A, G là trọng tâm tam giác ABC, SG ⊥ (ABC). Biết góc giữa SM và mặt phẳng (ABC) bằng 30 độ (với M là trung điểm của BC), BC = 2a và AB = 5a. Tính 9V/a^3 với V là thể tích khối chóp S.ABC. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a. Cạnh bên SA vuông góc với mặt phẳng đáy, SC tạo với mặt phẳng đáy một góc 45 độ và SC = 2a√2. Thể tích khối chóp S.ABCD bằng? + Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với đáy góc 60 độ. Gọi M là điểm đối xứng với C qua D và N là trung điểm của SC. Tính tỉ số thể tích giữa hai phần của hình chóp do mặt phẳng (BMN) tạo ra khi cắt hình chóp.
Bài tập trắc nghiệm thể tích khối đa diện - Nguyễn Đại Dương
Tài liệu gồm 57 trang, gồm các bài toán trắc nghiệm thuộc chuyên đề khối đa diện và thể tích có đáp án. A. LÝ THUYẾT I. Khối đa diện 1. Khái niệm Hình H cùng với các điểm nằm trong H được họi là khối đa diện giới hạn bởi hình H. Khối đa diện được giới hạn bởi một hình gồm những đa giác phẳng thỏa mãn hai điều kiện: + Hai đa giác bất kì hoặc không có điểm chung hoặc có một đỉnh chung hoặc có một cạnh chung. + Mỗi cạnh của một đa giác là cạnh chung của đúng hai đa giác. 2. Khối đa diện đều Khối đa diện lồi: Một khối đa diện được gọi là khối đa diện lồi nếu với bất kì hai điểm A và B nào của nó thì mọi điểm thuộc đoạn thẳng AB cũng thuộc khối đó. Khối đa diện đều: Khối đa diện đều là khối đa diện lồi có hai tính chất sau: + Các mặt là các đa giác đều có cùng số cạnh. + Mổi đỉnh là đỉnh chung của cùng một số cạnh. [ads] II. Thể tích khối đa diện 1. Thể tích khối chóp: Thể tích của một khối chóp bằng một phần ba tích số của diện tích đáy và chiều cao của khối chóp đó. 2. Thể tích lăng trụ – hình hộp: Thể tích của một khối lăng trụ bằng tích số của diện tích mặt đáy và chiều cao của lăng trụ đó. 3. Công thức tỉ số thể tích: Cho hình chóp S.ABC có A’, B’ và C’ lần lượt nằm trên các cạnh SA, SB và SC. Khi đó tỉ số thể tích giữa khối chóp S.A’B’C’ và khối chóp S.ABC có công thức: V/V’ = SA/S’A’.SB/S’B.SC/S’C. III. Các công thức thường dùng 1. Hệ thức lượng trong tam giác vuông 2. Hệ thức lượng trong tam giác thường 3. Diện tích của đa giác thông thường 4. Xác định chiều cao của hình chóp a. Hình chóp có một cạnh bên vuông góc với đáy: Chiều cao của hình chóp là độ dài cạnh bên vuông góc với đáy. b. Hình chóp có 1 mặt bên vuông góc với mặt đáy: Chiều cao của hình chóp là chiều cao của tam giác chứa trong mặt bên vuông góc với đáy. c. Hình chóp có 2 mặt bên vuông góc với mặt đáy: Chiều cao của hình chóp là giao tuyến của hai mặt bên cùng vuông góc với mặt phẳng đáy. d. Hình chóp đều: Chiều cao của hình chóp là đoạn thẳng nối đỉnh và tâm của đáy. Đối với hình chóp đều đáy là tam giác thì tâm là trọng tâm G của tam giác đều. B.TRẮC NGHIỆM KHÁCH QUAN CÓ ĐÁP ÁN