Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Bình Định

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Bình Định Bản PDF - Nội dung bài viết Đề thi Toán chuyên Tuyển sinh lớp 10 năm 2022 - 2023 Sở GD&ĐT Bình Định Đề thi Toán chuyên Tuyển sinh lớp 10 năm 2022 - 2023 Sở GD&ĐT Bình Định Sytu xin gửi đến các thầy cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên Toán) năm học 2022 - 2023 của Sở Giáo dục và Đào tạo tỉnh Bình Định. Đề thi sẽ diễn ra vào ngày 11 tháng 06 năm 2022, bao gồm đáp án và lời giải chi tiết. Trích dẫn một số câu hỏi trong đề thi: 1. Cho tam giác ABC nhọn, AB AC nội tiếp đường tròn (O). Gọi H là giao điểm của các đường cao AD, BE, CF. M là trung điểm của BC. Chứng minh tứ giác DMEF là tứ giác nội tiếp. 2. Đường tròn tâm I đường kính AH cắt đường tròn (O) tại điểm thứ hai là P. Kẻ đường kính AK của đường tròn (O). Chứng minh bốn điểm P, H, M, K thẳng hàng. 3. Các tiếp tuyến tại A và P của đường tròn (I) cắt nhau ở N. Chứng minh ba đường thẳng MN, EF, AH đồng quy. 4. Có tất cả bao nhiêu đa thức P(x) có bậc không lớn hơn 2 với các hệ số nguyên không âm và P(3) = 100? 5. Cho phương trình 3x^2 + bx + cx + 1 = 0 trong đó b, c là các số nguyên. Biết phương trình có nghiệm 0 và 2 + √5. Tìm b, c và các nghiệm còn lại của phương trình. Để tải và xem đề thi chi tiết, vui lòng truy cập vào file WORD tại đường link sau...

Nguồn: sytu.vn

Đọc Sách

Đề thi vào 10 môn Toán (chuyên) năm 2023 - 2024 trường chuyên Hạ Long - Quảng Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 trường THPT chuyên Hạ Long, tỉnh Quảng Ninh; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2023. Trích dẫn Đề thi vào 10 môn Toán (chuyên) năm 2023 – 2024 trường chuyên Hạ Long – Quảng Ninh : + Cho x, y là các số nguyên dương thỏa mãn x2 − y và x2 + y đều là các số chính phương. Chứng minh y là số chẵn. + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn tâm O. Hai đường cao BD, CE của tam giác ABC cắt nhau tại H. Tia phân giác của góc BAC cắt đường thẳng BD và đường tròn (O) theo thứ tự tại M và I (I khác A). Đường thẳng BD cắt đường tròn (O) tại K (K khác B), hai đường thẳng AC và IK cắt nhau tại Q, hai đường thẳng QH và AB cắt nhau tại P. Chứng minh: a) Tứ giác AMQK nội tiếp. b) Tam giác APQ cân tại A. + Trên bảng cho 2023 số nguyên phân biệt, mỗi số đều có dạng a2 + b2 trong đó a, b là các số nguyên. Mỗi lần ta thực hiện một phép biến đổi như sau: Xóa hai số tùy ý rồi viết thêm một số bằng tích của hai số vừa xóa. Hỏi sau một số lần biến đổi, trên bảng có số bằng 26.3^2023 hay không? Giải thích tại sao?
Đề thi vào lớp 10 chuyên môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Kiên Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Kiên Giang; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2023. Trích dẫn Đề thi vào lớp 10 chuyên môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Kiên Giang : + Cho một hình vuông có cạnh bằng 19 và có 2024 điểm phân biệt tùy ý trong hình vuông. Chứng minh rằng luôn tồn tại một hình tròn có bán kính bằng 1 chứa ít nhất 6 điểm trong 2024 điểm đã cho (các hình đã cho đều đo bằng cùng đơn vị đo). + Cho tam giác ABC vuông cân tại A, cạnh AB có độ dài bằng 22. Gọi điểm M thuộc cạnh AC sao cho MC = 2AM. Kẻ đường thẳng qua A vuông góc với BM tại H và cắt BC tại D. Điểm K thuộc đường thẳng AD sao cho CK vuông góc AD. Tính độ dài đoạn AH và đoạn CD. + Cho tam giác ABC (AB < AC), cả ba góc đều là góc nhọn và nội tiếp trong đường tròn tâm O. Ba đường cao của tam giác ABC là AD, BM, CN (D thuộc BC, M thuộc AC, N thuộc AB) đồng quy tại H. Đường thẳng MN cắt BC tại S. Gọi I, K lần lượt là trung điểm của AH và BC, Q là giao điểm của AD với MN. Đường thẳng qua H song song với BC cắt SM tại P. a) Chứng minh SB.SC = SM.SN. b) Chứng minh DIK đồng dạng với HPQ. c) Chứng minh HD ID HQ OK.
Đề thi thử Toán vào 10 lần 1 năm 2023 - 2024 trường THCS Phước Thạnh - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2023 – 2024 trường THCS Phước Thạnh, huyện Đất Đỏ, tỉnh Bà Rịa – Vũng Tàu; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề thi thử Toán vào 10 lần 1 năm 2023 – 2024 trường THCS Phước Thạnh – BR VT : + Theo kế hoạch, một tổ công nhân dự định phải may 120 kiện khẩu trang để phục vụ công tác phòng chống dịch Covid – 19. Nhưng khi thực hiện nhờ cải tiễn kỹ thuật nên mỗi ngày tổ đã làm tăng thêm 5 kiện so với dự định. Do đó tổ đã hoàn thành công việc sớm hơn dự định 2 ngày. Hỏi theo kế hoạch, mỗi ngày tổ phải làm bao nhiêu kiện khẩu trang? + Cho đường tròn (O) và điểm A cố định nằm ngoài đường tròn (O). Vẽ cát tuyến ABC không đi qua tâm O (B nằm giữa A và C). Gọi M là điểm chính giữa cung lớn BC, vẽ đường kính MN cắt BC tại D. Đường thẳng AM cắt đường tròn (O) tại E khác M. EN cắt BC tại F. a) Chứng minh tứ giác MEFD nội tiếp được đường tròn. b) Chứng minh EM EA EN EF. c) Chứng minh 2 ND NE NF ND DM. d) Biết hai điểm B, C cố định, đường tròn (O) thay đổi nhưng luôn đi qua hai điểm B C. Chứng minh: EF là đường phân giác trong tam giác BEC và NE luôn đi qua một điểm cố định. + Cho a, b, c là các số dương thỏa mãn điều kiện a + b + c = 2. Tìm giá trị lớn nhất của biểu thức Q 2a bc 2b ca 2c ab.
Đề thi thử Toán vào lớp 10 năm 2023 - 2024 phòng GDĐT Tây Hồ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND quận Tây Hồ, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 18 tháng 05 năm 2023. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 – 2024 phòng GD&ĐT Tây Hồ – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một ca nô xuôi dòng từ bến A đến bến B cách nhau 30km rồi ngược dòng từ bến B trở về bến A. Tính vận tốc riêng của ca nô, biết thời gian đi xuôi dòng ít hơn thời gian đi ngược dòng là 15 phút và vận tốc dòng nước là 3km/h. + Toán thực tế: Một chiếc nón lá có dạng hình nón, đường kính đáy bằng 40 cm, độ dài đường sinh bằng 30 cm. Người ta làm mặt xung quanh nón bằng 2 lớp lá khô. Tính diện tích lá cần dùng? (lấy số pi = 3,14). + Cho parabol (P): y = x2 và đường thẳng (d): y = 2mx – m2 + 1 (m là tham số) a. Chứng minh đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt với mọi m. b. Với giá trị nào của m thì (d) cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 thỏa mãn x1 = 3×2.