Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Nguyên hàm - tích phân và ứng dụng - Dương Phước Sang

giới thiệu đến thầy, cô và các em tài liệu nguyên hàm – tích phân và ứng dụng, tài liệu gồm 58 trang được biên soạn bởi thầy Dương Phước Sang tổng hợp lý thuyết và tuyển chọn một số bài tập trắc nghiệm – tự luận chủ đề nguyên hàm – tích phân và ứng dụng giúp học sinh học tập chương trình Giải tích 12 chương 3 và xa hơn là ôn tập chuẩn bị cho kỳ thi Trung học Phổ thông Quốc gia môn Toán. I. TÓM TẮT LÝ THUYẾT 1. Công thức định nghĩa của nguyên hàm, tích phân. 2. Tích chất của nguyên hàm. 3. Tích chất của tích phân. 4. Bảng nguyên hàm của các hàm số thông dụng. 5. Công thức nguyên hàm từng phần, tích phân từng phần. 6. Phương pháp đổi biến số trong bài toán nguyên hàm, tích phân. 7. Phép lượng giác hoá trong phương pháp tính tích phân (đổi biến số loại 1). 8. Một số dạng tích phân đặc biệt (hàm chẵn, hàm lẻ, hàm tuần hoàn …). 9. Ứng dụng tích phân giải bài toán về tốc độ thay đổi của một đại lượng. + Bài toán chuyển động. + Bài toán sinh học. [ads] 10. Ứng dụng tích phân tính diện tích hình phẳng. + Một số lưu ý về cách xử lý dấu giá trị tuyệt đối trong dấu tích phân khi tính diện tích hình phẳng. 11. Ứng dụng tích phân tính thể tích của một vật thể. + Công thức tính thể tích của một vật thể dựa vào diện tích mặt cắt. + Các công thức tính thể tích của vật thể tròn xoay (khi quay hình (H) quanh Ox). II. CÁC VÍ DỤ GIẢI TOÁN ĐIỂN HÌNH III. BÀI TẬP + Một số câu hỏi điền khuyết. + Luyện tập về nguyên hàm. + Câu hỏi trắc nghiệm khách quan nguyên hàm. + Luyện tập về tích phân. + Câu hỏi trắc nghiệm khách quan tích phân. + Luyện tập về ứng dụng của tích phân. + Câu hỏi trắc nghiệm khách quan ứng dụng của tích phân. + Trích dẫn câu trắc nghiệm trong các đề thi THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo.

Nguồn: toanmath.com

Đọc Sách

Kỹ thuật CHỌN trong trắc nghiệm tích phân và số phức - Trần Lê Quyền
Một nguyên tắc cơ bản khi xây dựng nên các bài toán đại số chính là: Thiết lập sự cân bằng giữa số ẩn số và số phương trình lập nên từ các dữ kiện. Lấy ý tưởng đó, bài viết này tổng hợp và giới thiệu vài cách xử lí nhanh một số bài toán số phức và tích phân bằng một kiểu chọn đặc biệt. Tôi cố tình không phân chia ra các đề mục để tách biệt giữa số phức và tích phân vì xét dưới góc nhìn này, chúng hoàn toàn giống nhau! [ads]
Bộ câu hỏi tích phân chống Casio có lời giải chi tiết - Đặng Việt Hùng
Tài liệu gồm 12 trang với 35 bài toán tích phân chống Casio có lời giải chi tiết. Tài liệu do thầy Đặng Việt Hùng biên soạn và chia sẻ.
Ứng dụng tích phân để giải bài toán thực tiễn - Trần Văn Tài
Tài liệu gồm 36 trang với 67 bài toán ứng dụng của tích phân để giải bài toán thực tiễn, các bài toán đều được phân tích và có lời giải chi tiết.
Ứng dụng của tích phân - Lê Bá Bảo
Tài liệu gồm 31 trang, trình bày lý thuyết, các dạng toán, ví dụ mẫu và bài tập về chuyên đề ứng dụng của tích phân. Nội dung tài liệu gồm: Ứng dụng 1: TÍNH DIỆN TÍCH HÌNH PHẲNG I. LÝ THUYẾT + Bài toán 1: Diện tích S của hình phẳng giới hạn bởi đồ thị của hàm số f(x) liên tục trên đoạn [a; b], trục hoành và hai đường thẳng x = a, x = b. + Bài toán 2: Diện tích S của hình phẳng giới hạn bởi các đồ thị của hàm số f(x), g(x) liên tục trên [a; b] và hai đường thẳng x = a, x = b. + Bài toán 3: Hình phẳng giới hạn bởi nhiều hơn hai đường cong. II. PHƯƠNG PHÁP Phương pháp: Sử dụng tính chất cơ bản của tích phân (thêm cận trung gian) để tính tích phân chưa dấu giá trị tuyệt đối (GTTĐ). III. BÀI TẬP TRẮC NGHIỆM MINH HỌA Gồm các bài toán ứng dụng của tích phân để tính diện tích hình phẳng có lời giải chi tiết. IV. BÀI TẬP TRẮC NGHIỆM TỰ LUYỆN Gồm 60 câu trắc nghiệm về ứng dụng của tích phân để tính diện tích hình phẳng. [ads] Ứng dụng 2: TÍNH THỂ TÍCH VẬT THỂ I. LÝ THUYẾT + Bài toán 1: Tính thể tích của vật thể. + Bài toán 2: Tính thể tích khối tròn xoay (Một hình phẳng quay quanh một trục nào đó tạo nên một khối tròn xoay). II. BÀI TẬP TRẮC NGHIỆM MINH HỌA Gồm các bài toán ứng dụng của tích phân để tính thể tích vật thể có lời giải chi tiết. III. BÀI TẬP TRẮC NGHIỆM TỰ LUYỆN Gồm 51 câu trắc nghiệm về ứng dụng của tích phân để tính thể tích vật thể.