Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 1 (HK1) lớp 11 môn Toán năm 2022 2023 trường Nguyễn Thái Bình Quảng Nam

Nội dung Đề cuối học kì 1 (HK1) lớp 11 môn Toán năm 2022 2023 trường Nguyễn Thái Bình Quảng Nam Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kỳ 1 môn Toán lớp 11 năm học 2022 – 2023 trường THPT Nguyễn Thái Bình, tỉnh Quảng Nam; đề thi được biên soạn theo cấu trúc 50% trắc nghiệm + 50% tự luận, thời gian làm bài 60 phút (không kể thời gian giao đề); đề thi có đáp án và hướng dẫn giải chi tiết. Trích dẫn Đề cuối học kỳ 1 Toán lớp 11 năm 2022 – 2023 trường Nguyễn Thái Bình – Quảng Nam : + Cho tứ diện ABCD. Gọi I J lần lượt là trọng tâm các tam giác ABC và ABD. Chọn khẳng định đúng trong các khẳng định sau? A. IJ song song với AB. B. IJ chéo CD. C. IJ song song với CD. D. IJ cắt AB. + Trong một phòng thi học kì 1 tại trường THPT Nguyễn Thái Bình có bố trí 10 bàn, mỗi bàn có hai chỗ ngồi để xếp 20 thí sinh. Trong phòng thi có bạn Bình và Bích, có bao nhiêu cách xếp để bạn Bình và Bích ngồi cạnh nhau trên cùng mội bàn? + Cho hình chóp S ABCD có đáy là hình thang ABCD AD BC. Gọi M là trung điểm AB Giao tuyến của hai mặt phẳng SCM và SBD là A. SO (O là giao điểm của AC và BD). B. SH (H là giao điểm của CM và BD). C. SP (P là giao điểm của AB và CD). D. SP (P là giao điểm của AM và BD).

Nguồn: sytu.vn

Đọc Sách

Đề thi học kỳ 1 Toán 11 năm học 2018 - 2019 trường THPT Marie Curie - Hà Nội
Đề thi học kỳ 1 Toán 11 năm học 2018 – 2019 trường THPT Marie Curie – Hà Nội có mã đề 003 gồm 2 trang, đề được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, trong đó phần trắc nghiệm gồm 16 câu, chiếm 40% số điểm, phần tự luận gồm 3 câu, chiếm 60% số điểm, học sinh có 90 để hoàn thành bài thi, kỳ thi nhằm đánh giá lại toàn diện kiến thức môn Toán của học sinh khối 11 trường THPT Marie Curie, thành phố Hà Nội trong giai đoạn học kỳ 1 vừa qua để làm cơ sở đánh giá, xếp loại học lực, phát hiện các em học sinh giỏi môn Toán 11 … Trích dẫn đề thi học kỳ 1 Toán 11 năm học 2018 – 2019 trường THPT Marie Curie – Hà Nội : + Gọi P là tập các số tự nhiên gồm 4 chữ số khác nhau được lập từ tập {1,2,5,7,8}. Chọn ngẫu nhiên tự P một số tự nhiên. Tính xác suất để số được chọn lớn hơn 2018. [ads] + Hai học sinh A và B (trường THPT Marie Curie, Hà Nội) cùng chơi ném bóng rổ. Biết xác suất ném trúng rổ của A và B lần lượt là 0.6 và 0.7. Xác suất để trong một lượt ném của A và B, có ít nhất một bạn ném trúng rổ là? + Cho hình chóp S.ABCD có ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SC và AB. Chứng minh OM // (SAB). Xác định giao điểm của BM với (SAD). Gọi (α) là mặt phẳng chứa MN và (α) // AD. Xác định và tính điện tích thiết diện tạo bởi (α) với hình chóp biết rằng tất cả các cạnh của hình chóp đều bằng 10cm.
Đề thi học kỳ 1 Toán 11 năm 2018 - 2019 trường THPT chuyên ĐHSP - Hà Nội
Sáng nay (ngày 03 tháng 12 năm 2018), trường THPT chuyên Đại học Sư Phạm – Hà Nội đã tiến hành tổ chức kỳ thi HKI Toán 11, kết thúc chương trình Toán 11 giai đoạn học kỳ 1. Đề thi học kỳ 1 Toán 11 năm 2018 – 2019 trường THPT chuyên ĐHSP – Hà Nội mã đề 485 được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, trong đó phần trắc nghiệm 20 câu hỏi và bài toán, chiếm 50% số điểm, phần tự luận gồm 3 bài toán, chiếm 50% số điểm, với hình thức thi kết hợp này, giáo viên vừa đưa được nhiều đơn vị kiến thức vào đề thi, kiểm tra khả năng nhạy bén tìm ra kết quả, vừa đánh giá được khả năng suy luận, khả năng trình bày lời giải của học sinh, đề thi có thời gian làm bài là 90 phút. Trích dẫn đề thi học kỳ 1 Toán 11 năm 2018 – 2019 trường THPT chuyên ĐHSP – Hà Nội : + Tìm mệnh đề sai trong các mệnh đề sau: A. Cho điểm M nằm ngoài mặt phẳng (α). Khi đó tồn tại duy nhất một đường thẳng a chứa M và song song với (α). B. Cho đường thẳng a và b chéo nhau. Khi đó tồn tại duy nhất mặt phẳng (α) chứa a và song song với b. C. Cho điểm M nằm ngoài mặt phẳng (α). Khi đó tồn tại duy nhất một mặt phẳng (β) chứa M và song song với (α). D. Cho đường thẳng a và mặt phẳng (α) song song với nhau. Khi đó tồn tại duy nhất một mặt phẳng (β) chứa a và song song với (α). [ads] + Cho tứ diện S.ABCD có đáy ABCD là hình thang (AB || CD). Gọi M, N và P lần lượt là trung điểm của BC, AD và SA. Giao tuyến của hai mặt phẳng (SAB) và (MNP) là? A. đường thẳng qua M và song song với SC. B. đường thẳng qua P và song song với AB. C. đường thẳng PM. D. đường thẳng qua S và song song với AB. + Cho dãy số (un) với un = (n + 2018)/(2018n + 1). Chọn khẳng định đúng trong các khẳng định sau: A. Dãy (un) bị chặn dưới nhưng không bị chặn trên. B, Dãy (un) bị chặn. C. Dãy (un) không bị chặn trên, không bị chặn dưới. D. Dãy (un) bị chặn trên nhưng không bị chặn dưới.
Đề thi học kỳ 1 Toán 11 năm học 2017 - 2018 trường THPT Đông Hiếu - Nghệ An
Đề thi học kỳ 1 Toán 11 năm học 2017 – 2018 trường THPT Đông Hiếu – Nghệ An mã đề 005 gồm 26 câu hỏi trắc nghiệm và 3 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi học kỳ 1 Toán 11 : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của cạnh SA. 1) Xác định giao tuyến d của hai mặt phẳng (MBD) và (SAC). Chứng tỏ d song song với mặt phẳng (SCD). 2) Xác định thiết diện của hình chóp cắt bởi mặt phẳng (MBC). Thiết diện đó là hình gì? [ads] + Các yếu tố nào sau đây xác định một mặt phẳng duy nhất? A. Một điểm và một đường thẳng B. Ba điểm C. Bốn điểm D. Hai đường thẳng cắt nhau + Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển được lấy ra đều là môn toán.
Đề thi học kỳ 1 Toán 11 năm học 2017 - 2018 trường THPT Bến Tre - Vĩnh Phúc
Đề thi học kỳ 1 Toán 11 năm học 2017 – 2018 trường THPT Bến Tre – Vĩnh Phúc gồm 10 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi học kỳ 1 Toán 11 : + An muốn mua một cây bút mực và một cây bút chì. Các cây bút mực có 8 màu khác nhau, các cây bút chì cũng có 8 màu khác nhau. Như vậy An có bao nhiêu cách chọn? + Để kiểm tra chất lượng sản phẩm từ một công ty sữa, người ta gửi đến bộ phận kiểm nghiệm 5 hộp sữa cam, 4 sữa dâu, 3 sữa nho. Bộ phận kiểm nghiệm chọn ngẫu nhiên 3 hộp sữa để phân tích mẫu. Tính xác suất để ba hộp sữa được chọn có cả 3 loại. [ads] + Cho hình chóp S.ABCD, có các cặp cạnh đáy không song song với nhau. Trên AB lấy một điểm M. Trên SC lấy một điểm N. (M,N không trùng với các đầu mút). 1. Tìm giao tuyến của mặt phẳng (AMN) và mp (SCD). 2. Tìm giao điểm của AN với mp (SBD).