Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2018 2019 trường THCS THPT Mùa Xuân TP HCM

Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2018 2019 trường THCS THPT Mùa Xuân TP HCM Bản PDF Nhằm kiểm tra đánh giá chất lượng môn Toán lớp 12 giai đoạn cuối học kỳ 2, vừa qua, trường THCS – THPT Mùa Xuân, thành phố Hồ Chí Minh đã tổ chức kỳ thi kiểm tra học kỳ 2 môn Toán lớp 12 năm học 2018 – 2019. Đề thi HK2 Toán lớp 12 năm 2018 – 2019 trường THCS – THPT Mùa Xuân – TP HCM có mã đề 528, đề thi có 04 trang với 30 câu trắc nghiệm và 04 câu tự luận, phần trắc nghiệm chiếm 6,0 điểm, phần tự luận chiếm 4,0 điểm, thời gian làm bài là 90 phút. Trích dẫn đề thi HK2 Toán lớp 12 năm 2018 – 2019 trường THCS – THPT Mùa Xuân – TP HCM : + Kí hiệu (H) là hình phẳng giới hạn bởi đồ thị hàm số y = 1 – x^2, hai trục tọa độ Ox, Oy và đường thẳng x = 2.Thể tích V của khối tròn xoay thu được khi quay hình (H) xung quanh trục Ox là? [ads] + Viết công thức tính thể tích V của khối tròn xoay được tạo ra khi quay hình thang cong, giới hạn bởi đồ thị hàm số y = f(x), trục Ox và hai đường thẳng x = a, x = b (a < b) xung quanh trục Ox. + Trong không gian với hệ toạ độ Oxyz, cho hai mặt phẳng (α) và (β) có phương trình (α): 2x + (m + 1)y + 3z – 5 = 0, (β): (n + 1)x – 6y – 6z = 0. Hai mặt phẳng (α) và (β) song song với nhau khi và chỉ khi tích m.n bằng? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường THCSTHPT Trí Đức - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THCS&THPT Trí Đức, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.
Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường THPT Trưng Vương - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THPT Trưng Vương, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường THPT Trưng Vương – TP HCM : + Trong không gian Oxyz, cho hai điểm A M và đường thẳng. Gọi u a b là một vectơ chỉ phương của trình đường thẳng đi qua M vuông góc với đường thẳng d sao cho khoảng cách từ A đến đường thẳng là nhỏ nhất. Tính 2 2 a b. + Trên mặt phẳng toạ độ Oxy, gọi A B C lần lượt là điểm biểu diễn các số phức z iz và z iz. Biết tam giác ABC có diện tích bằng 8. Tính môđun của số phức z. + Trong không gian Oxyz, mặt cầu S có tâm nằm trên mặt phẳng và tiếp xúc với mặt phẳng Oxy tại điểm H(-1;1;0). Tính bán kính R của mặt cầu.
Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường THPT Trường Chinh - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THPT Trường Chinh, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường THPT Trường Chinh – TP HCM : + Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x = 1 và x = 3 , biết rằng khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x thì được thiết diện là một hình thoi có độ dài hai đường chéo là 6x và 2 3 2 x. + Cho (H) là hình phẳng giới hạn bởi đường cong y x và nửa đường tròn có phương trình (phần tô đậm trong hình vẽ). Diện tích của (H) bằng? + Trong không gian Oxyz, cho ba điểm. Tìm m n để A B C thẳng hàng.
Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường Trương Vĩnh Ký - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường TH – THCS – THPT Trương Vĩnh Ký, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường TH – THCS – THPT Trương Vĩnh Ký – TP HCM : + Cho hình (H) giới hạn tạo bởi đồ thị hàm số y x x 3, trục hoành và hai đường x 1 và x 2. Quay hình (H) quanh trục Ox. Tính thể tích khối tròn xoay được tạo thành. + Trong không gian Oxyz, viết phương trình tham số và phương trình chính tắc của đường thẳng đi qua điểm A(1;2;3) và có vectơ chỉ phương u. + Trong không gian Oxyz, viết phương trình mặt cầu (S) có tâm I(1;2;3) và bán kính bằng độ dài đoạn thẳng AB với A(1;-1;2) và B(2;1;4).