Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phát triển đề tham khảo tốt nghiệp THPT 2021 môn Toán - Lê Văn Đoàn

Tài liệu gồm 146 trang, được biên soạn bởi thầy giáo Lê Văn Đoàn, phát triển đề tham khảo tốt nghiệp THPT 2021 môn Toán, với những câu hỏi và bài tập trắc nghiệm tương tự, có đáp án; tài liệu giúp học sinh lớp 12 rèn luyện để chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán năm học 2020 – 2021 do Bộ Giáo dục và Đào tạo tổ chức. 50 dạng toán đề minh họa TN THPT 2021 môn Toán: 1. Hoán vị – Chỉnh hợp – Tổ hợp: Cách chọn người / vật đơn giản. 2. Cấp số cộng: Cho trước u1 và ui. 3. Đơn điệu hàm số: Biết bảng biến thiên. 4. Cực trị hàm số: Biết bảng biến thiên. 5. Cực trị hàm số: Biết bảng xét dấu f'(x). 6. Tiệm cận đồ thị hàm số. Tìm TCĐ – TCN khi biết trước ĐTHS tường minh. 7. Khảo sát đồ thị: Tìm hàm số khi biết đồ thị. 8. Tương giao hàm số: Đồ thị cắt trục tung – trục hoành. 9. Logarit: Rút gọn biểu thức logarit đơn giản. 10. Đạo hàm hàm số mũ: Hàm y = a^x. 11. Lũy thừa: Rút gọn lũy thừa đơn giản. 12. Phương trình mũ: Phương trình a^f(x) = b. 13. Phương trình logarit: Phương trình log a (kx + q) = b. 14. Nguyên hàm đa thức: Đa thức bậc 2 – 3 – 4. 15. Nguyên hàm lượng giác: Lượng giác: f(x) = cos(u(x)). 16. Tích phân: Tính tích phân dựa vào tính chất. 17. Tích phân: Đa thức. 18. Số phức: Tìm số phức liên hợp. 19. Số phức: Các phép toán cộng – trừ. 20. Số phức: Tìm điểm biểu diễn của số phức cho trước. 21. Khối đa diện: Tính V biết trước chiều cao – diện tích đáy. 22. Khối đa diện: Tính V biết các kích thước khối hộp. 23. Khối tròn xoay: Xác định công thức tính V. 24. Khối tròn xoay: Tính diện tích xung quanh biết r và l. 25. Hệ Oxyz: Tìm tọa độ trung điểm. 26. Hệ Oxyz: Tìm tâm – bán kính mặt cầu. 27. Phương trình mặt phẳng: Tìm mặt phẳng đi qua điêm cho trước. 28. Phương trình đường thẳng: Tìm VTCP đường thẳng đi qua hai điểm cho trước. 29. Xác suất: Tính xác suất chọn được số chẵn – lẻ. 30. Đơn điệu hàm số: Tìm HS đơn điệu trên R. 31. GTLN – GTNN: Tìm max – min trên đoạn. 32. BPT mũ: Giải BPT mũ. 33. Tích phân: Tính tích phân dựa vào tính chất. 34. Số phức: Tính module của tích hai số phức. 35. Góc giữa đường – mặt: Tính góc giữa đường và mặt trong hình hộp. 36. Khoảng cách từ điểm – mặt: Tính khoảng cách từ đỉnh đến mặt đáy của chóp đều. 37. Phương trình mặt cầu: Viết PTMC có tâm và đi qua điểm cho trước. 38. Phương trình đường thẳng: Viết PTĐT đi qua hai điểm cho trước. 39. GTLN – GTNN: Tìm max – min hàm hợp trên đoạn. 40. Bất phương trình mũ: Tìm cặp nghiệm nguyên thỏa BPT. 41. Tích phân: Tính TP hàm ẩn. 42. Số phức: Tìm số phức thỏa nhiều điều kiện cho trước. 43. Khối đa diện: Tính V biết chiều cao khối đa diện và góc giữa mặt bên và mặt đáy. 44. Khối đa diện: Bài toán thực tế. 45. Phương trình đường thẳng: Viết PTĐT thỏa nhiều điều kiện với MP, đường thẳng khác. 46. Cực trị: Tìm cực trị hàm hợp khi biết bảng xét dấu. 47. Phương trình logarit – mũ: Tìm tham số để biến số phụ thuộc vào biểu thức cho trước. 48. Ứng dụng tích phân: Tìm tỉ số diện tích, biết đồ thị hàm số. 49. Số phức: Cực trị số phức. 50. Phương trình mặt phẳng: Tìm hệ số PTMP thỏa mãn các điều kiện cho trước (lồng ghép với khối tròn xoay).

Nguồn: toanmath.com

Đọc Sách

Tiếp cận 11 chuyên đề trọng tâm giải nhanh trắc nghiệm Toán - Trần Công Diêu
Sách gồm 449 trang với 11 chuyên đề: + Chuyên đề 1. Ứng dụng đạo hàm + Chuyên đề 2. Hàm số lũy thừa, mũ và logarit + Chuyên đề 3. Nguyên hàm, tích phân và ứng dụng + Chuyên đề 4. Số phức + Chuyên đề 5. Hình học không gian + Chuyên đề 6. Phương pháp tọa độ trong không gian + Chuyên đề 7. Lượng giác + Chuyên đề 8. Đại số tổ hợp và xác suất + Chuyên đề 9. Giới hạn, liên tục + Chuyên đề 10. Hình học Oxy + Chuyên đề 11. Phương trình, bất phương trình đại số [ads]
131 bài toán ứng dụng thực tiễn có lời giải chi tiết - Trần Văn Tài
Tài liệu gồm 74 trang với 131 bài toán ứng dụng thực tiễn thường gặp do thầy Trần Văn Tài biên soạn. Các bài toán đều có lời giải chi tiết. Trích một số phần trong tài liệu: 1. Đường dây điện 110KV kéo từ trạm phát (điểm A) trong đất liền ra Côn Đảo (điểm C). biết khoảng cách ngắn nhất từ C đến B là 60km, khoảng cách từ A đến B là 100km, mỗi km dây điện dưới nước chi phí là 5000 USD, chi phí cho mỗi km dây điện trên bờ là 3000 USD. Hỏi điểm G cách A bao nhiêu để mắc dây điện từ A đến G rồi từ G đến C chi phí ít nhất. [ads] 2. Cho một tấm nhôm hình vuông cạnh 6 cm. Người ta muốn cắt một hình thang như hình vẽ. Tìm tổng x + y để diện tích hình thang EFGH đạt giá trị nhỏ nhất. 3. Nhân ngày phụ nữ Việt Nam 20 -10 năm 2017 , ông A quyết định mua tặng vợ một món quà và đặt nó vào trong một chiếc hộp có thể tích là 32 (đvtt) có đáy hình vuông và không có nắp . Để món quà trở nên thật đặc biệt và xứng đáng với giá trị của nó ông quyết định mạ vàng cho chiếc hộp , biết rằng độ dạy lớp mạ tại mọi điểm trên hộp là như nhau . Gọi chiều cao và cạnh đáy của chiếc hộp lần lượt là h; x. Để lượng vàng trên hộp là nhỏ nhất thì giá trị của h; x phải là ?
87 bài toán thực tế có lời giải chi tiết - Nguyễn Tiến Minh
Tài liệu gồm 49 trang cung cấp một số công thức thường gặp trong bài toán thực tế, kèm theo 87 câu trắc nghiệm có lời giải chi tiết. Trích dẫn tài liệu : + Ông A vay ngắn hạn ngân hàng 100 triệu đồng, với lãi suất 12% trên năm. Ông muốn hoàn nợ cho ngân hàng theo cách sau: sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng ba tháng kể từ ngày vay. Hỏi, theo cách đó, số tiền m mà ông A phải trả cho ngân hàng theo cách đó là bao nhiêu? Biết rằng, lãi suất ngân hàng không thay đổi trong thời gian ông A hoàn nợ. [ads] + Theo dự báo với mức tiêu thụ dầu không đổi như hiện nay thì trữ lượng dầu của nước A sẽ hết sau 100 năm nữa. Nhưng do nhu cầu thực tế, mức tiêu thụ tăng lên 4% mỗi năm. Hỏi sau bao nhiêu năm số dầu dự trũ của nước A sẽ hết. + Biết rằng năm 2001, dân số Việt Nam là 78.685.800 người và tỉ lệ tăng dân số năm đó là 1,7%. Cho biết sự tăng dân số được ước tính theo công thức: S = A.e^(Nr) (trong đó A: là dân số của năm lấy làm mốc tính, S là dân số sau N năm, r là tỉ lệ tăng dân số hàng năm). cứ tăng dân số với tỉ lệ như vậy thì đến năm nào dân số nước ta ở mức 120 triệu người.
Một số phương pháp giải nhanh toán trắc nghiệm bằng máy tính bỏ túi - Nguyễn Vũ Thụ Nhân
Tài liệu gồm 43 trang của tác giả Nguyễn Vũ Thụ Nhân trình bày các mẹo giải nhanh toán trắc nghiệm bằng cách sử dụng máy tính Casio.