Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giao lưu HSG Toán năm 2018 - 2019 cụm Gia Bình - Lương Tài - Bắc Ninh

Đề thi giao lưu HSG Toán năm 2018 – 2019 cụm Gia Bình – Lương Tài – Bắc Ninh mã đề 888 gồm 6 trang với 50 câu hỏi và bài toán hình thức trắc nghiệm khách quan, thời gian làm bài thi 90 phút, kỳ thi được diễn ra vào ngày 23 tháng 12 năm 2018 nhằm đánh giá chất lượng đội tuyển học sinh giỏi Toán của các trường, đồng thời tạo điều kiện để các em rèn luyện và phát triển năng lực môn Toán của bản thân, đề thi có đáp án mã đề 666 và 888. Trích dẫn đề thi giao lưu HSG Toán năm 2018 – 2019 cụm Gia Bình – Lương Tài – Bắc Ninh : + Một phân xưởng có hai máy đặc chủng M1, M2 sản xuất hai loại sản phẩm kí hiệu I, II. Một tấn sản phẩm loại I lãi 2 triệu đồng, một tấn sản phẩm loại II lãi 1,6 triệu đồng. Muốn sản xuất một tấn sản phẩm loại I phải dùng máy M1 trong 3 giờ và máy M2 trong 1 giờ. Muốn sản xuất một tấn sản phẩm loại II phải dùng máy M1 trong 1 giờ và máy M2 trong 1 giờ. Một máy không thể dùng để sản xuất đồng thời hai sản phẩm trên. Máy M1 làm việc không quá 6 giờ trong một ngày, máy M2 một ngày chỉ làm việc không quá 4 giờ. Tổng số tiền lãi là lớn nhất có thể đạt được là? + Nhà xe khoán cho hai tài xế ta-xi Nam và Tiến mỗi người lần lượt nhận 32 lít và 72 lít xăng. Hỏi tổng số ngày ít nhất là bao nhiêu để hai tài xế chạy tiêu thụ hết số xăng của mình được khoán, biết rằng chỉ tiêu cho hai người một ngày tổng cộng chỉ chạy đủ hết 10 lít xăng và mỗi ngày lượng xăng của mỗi người chạy là không thay đổi? [ads] + Một người thợ muốn tạo một đồ vật hình trụ từ một khối gỗ hình hộp chữ nhật, có đáy là hình vuông và chiều cao bằng 1,25 m. Để tạo ra đồ vật đó người thợ vẽ hai đường tròn (C) và (C’) nội tiếp hai hình vuông của hai mặt đáy của khối gỗ hình hộp chữ nhật rồi dọc đi phần gỗ thừa theo các đường sinh của đồ vật hình trụ. Biết rằng, trong tam giác cong tạo bởi đường tròn (C) và hình vuông ngoại tiếp của (C) có một hình chữ nhật kích thước 0,3cm x 0,6cm (như hình vẽ) và mỗi mét khối gỗ thành phẩm có giá 20 triệu đồng. Hỏi người thợ cần số tiền gần nhất với số tiền của phương án nào dưới đây để tạo được 10 đồ vật như vậy.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán cấp THPT năm 2022 2023 sở GD ĐT An Giang
Nội dung Đề học sinh giỏi Toán cấp THPT năm 2022 2023 sở GD ĐT An Giang Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán cấp THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh An Giang; kỳ thi được diễn ra vào ngày 15 tháng 04 năm 2023. Trích dẫn Đề học sinh giỏi Toán cấp THPT năm 2022 – 2023 sở GD&ĐT An Giang : + Cho hình thang ABCD vuông tại A và B cho AD = 2a; AB = BC = a. Trên tia Ax vuông góc với mặt phẳng (ABCD) lấy một điểm S bất kỳ. Gọi C’; D’ lần lượt là hình chiếu vuông góc của A trên SC; SD. a) Chứng minh rằng A; B; C’; D’ cùng thuộc một mặt phẳng. b) Chứng minh rằng C’D’ luôn đi qua một điểm cố định khi S thay đổi trên Ax. + Cho tập hợp các số có ba chữ số và tính chất sau: (1) Không có số nào chứa chữ số 0. (2) Tổng các chữ số của mỗi số là 9. (3) Hai số bất kỳ có chữ số hàng đơn vị khác nhau. (4) Chữ số hàng chục của hai số bất kỳ khác nhau. (5) Chữ số hàng trăm của hai số bất kỳ khác nhau. a) Tìm số phần tử của S là tập hợp các số có ba chữ số thỏa mãn (1) và (2). b) Tìm giá trị lớn nhất số phần tử của T các số có ba chữ số thỏa mãn (1) đến (5). + Cho tam giác đều ABC cạnh bằng a. Dựng tam giác A1B1C1 có các đỉnh là trung điểm các cạnh của tam giác ABC, tam giác A2B2C2 có các đỉnh là trung điểm của các cạnh của tam giác A1B1C1 … tam giác An+1Bn+1Cn+1 là trung điểm các cạnh của tam giác AnBnCn … Đặt p1; p2 … pn … và S1; S2 … Sn … lần lượt là chu vi và diện tích tam giác A1B1C1; A2B2C2 … AnBnCn … a) Tính (pn) và (Sn) theo a, n. b) Ký hiệu Pn = p1 + p2 + … + pn và Qn = S1 + S2 + … + Sn. Tính lim Pn và lim Qn.
Đề học sinh giỏi MTCT Toán THPT năm 2022 2023 sở GD ĐT Vĩnh Long
Nội dung Đề học sinh giỏi MTCT Toán THPT năm 2022 2023 sở GD ĐT Vĩnh Long Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi cấp tỉnh giải toán bằng máy tính cầm tay môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Long; kỳ thi được diễn ra vào ngày 09 tháng 04 năm 2023; đề thi có đáp án và hướng dẫn giải. Trích dẫn Đề học sinh giỏi MTCT Toán THPT năm 2022 – 2023 sở GD&ĐT Vĩnh Long : + Một người gửi triệu đồng vào ngân hàng với kì hạn tháng (quý), lãi suất một quý theo hình thức lãi kép. Sau đúng tháng, người đó lại gửi thêm triệu đồng với hình thức và lãi suất như trên. Hỏi sau năm tính từ lần gửi đầu tiên người đó nhận được số tiền gần với kết quả nào nhất? (làm tròn đến 1 chữ số thâp phân). + Cho tam giác ABC có AB 3 5 BC 5 3 CA 48. Gọi M là trung điểm của AC; N là điểm trên cạnh BC sao cho BC BN 3 và BM cắt AN tại I. Trên đường thẳng vuông góc với mặt phẳng ABC tại I, lấy điểm S sao cho SI 7. Tính gần đúng a) Độ dài các cạnh SA SB SC của tứ diện SABC (làm tròn đến 9 chữ số thâp phân). b) Chiều cao BK của tứ diện SABC (làm tròn đến 9 chữ số thâp phân). c) Bán kính R của mặt cầu ngoại tiếp tứ diện SABC (làm tròn đến 9 chữ số thâp phân). + Cho 2023 đường tròn đồng tâm nội tiếp trong 2023 hình vuông (dạng như hình vẽ). Tính gần đúng diện tích phần tô đậm, biết hình vuông lớn nhất có cạnh bằng 1 cm (làm tròn đến 5 chữ số thâp phân).
Đề HSG lớp 12 môn Toán năm 2022 2023 trường THCS THPT Thống Nhất Thanh Hóa
Nội dung Đề HSG lớp 12 môn Toán năm 2022 2023 trường THCS THPT Thống Nhất Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng và chọn đội tuyển học sinh giỏi môn Toán lớp 12 năm học 2022 – 2023 trường THCS & THPT Thống Nhất, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết mã đề 235. Trích dẫn Đề HSG Toán lớp 12 năm 2022 – 2023 trường THCS & THPT Thống Nhất – Thanh Hóa : + Một người nhận hợp đồng dài hạn làm việc cho một công ty với mức lương khởi điểm của mỗi tháng trong 3 năm đầu tiên là 6 triệu đồng /tháng. Tính từ ngày đầu tiên làm việc, cứ sau đúng 3 năm liên tiếp thì tăng lương 10% so với mức lương một tháng người đó đang hưởng. Nếu tính theo hợp đồng thì tháng đầu tiên của năm thứ 16 người đó nhận được mức lương là bao nhiêu? + Xét các số nguyên dương a b sao cho phương trình 2 a xb x ln ln 5 0 có hai nghiệm phân biệt 1 2 x x và phương trình 2 5log log 0 xb xa có hai nghiệm phân biệt 3 4 x x thỏa mãn 12 34 xx. Tìm giá trị nhỏ nhất min S của S ab. + Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a SA SB a SC SD a 3. Gọi E F lần lượt là trung điểm các cạnh SA SB. Trên cạnh BC lấy M sao cho BM x. Tính diện tích thiết diện của hình chóp với mặt phẳng (MEF) theo x và a? File WORD (dành cho quý thầy, cô):
Đề học sinh giỏi lớp 12 môn Toán năm 2022 2023 trường THPT Yên Định 1 Thanh Hóa
Nội dung Đề học sinh giỏi lớp 12 môn Toán năm 2022 2023 trường THPT Yên Định 1 Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi giao lưu học sinh giỏi môn Toán lớp 12 THPT năm học 2022 – 2023 trường THPT Yên Định 1, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề học sinh giỏi Toán lớp 12 năm 2022 – 2023 trường THPT Yên Định 1 – Thanh Hóa : + Cho đa giác lồi n cạnh n n 6 nội tiếp đường tròn (O) sao cho không có ba đường chéo nào đồng quy. Các cạnh và các đường chéo của đa giác giao nhau tạo thành các tam giác. Gọi X là tập hợp các tam giác như thế. Lấy ngẫu nhiên một tam giác trong tập X. Tìm n để xác suất lấy được tam giác không có đỉnh nào là đỉnh của đa giác bằng 4 15. + Cho hàm số 3 22 3 y x mx m x m 3 3 với m là tham số, gọi (C) là đồ thị của hàm số đã cho. Biết rằng, khi m thay đổi, điểm cực đại của đồ thị (C) luôn nằm trên một đường thẳng d cố định. Xác định hệ số góc k của đường thẳng d. + Một chiếc ly dạng hình nón (như hình vẽ với chiều cao ly là h). Người ta đổ một lượng nước vào ly sao cho chiều cao của lượng nước trong ly bằng 1 4 chiều cao của ly. Hỏi nếu bịt kín miệng ly rồi úp ngược ly lại thì tỷ lệ chiều cao của mực nước và chiều cao của ly nước bây giờ bằng bao nhiêu? File WORD (dành cho quý thầy, cô):