Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giao lưu HSG Toán năm 2018 - 2019 cụm Gia Bình - Lương Tài - Bắc Ninh

Đề thi giao lưu HSG Toán năm 2018 – 2019 cụm Gia Bình – Lương Tài – Bắc Ninh mã đề 888 gồm 6 trang với 50 câu hỏi và bài toán hình thức trắc nghiệm khách quan, thời gian làm bài thi 90 phút, kỳ thi được diễn ra vào ngày 23 tháng 12 năm 2018 nhằm đánh giá chất lượng đội tuyển học sinh giỏi Toán của các trường, đồng thời tạo điều kiện để các em rèn luyện và phát triển năng lực môn Toán của bản thân, đề thi có đáp án mã đề 666 và 888. Trích dẫn đề thi giao lưu HSG Toán năm 2018 – 2019 cụm Gia Bình – Lương Tài – Bắc Ninh : + Một phân xưởng có hai máy đặc chủng M1, M2 sản xuất hai loại sản phẩm kí hiệu I, II. Một tấn sản phẩm loại I lãi 2 triệu đồng, một tấn sản phẩm loại II lãi 1,6 triệu đồng. Muốn sản xuất một tấn sản phẩm loại I phải dùng máy M1 trong 3 giờ và máy M2 trong 1 giờ. Muốn sản xuất một tấn sản phẩm loại II phải dùng máy M1 trong 1 giờ và máy M2 trong 1 giờ. Một máy không thể dùng để sản xuất đồng thời hai sản phẩm trên. Máy M1 làm việc không quá 6 giờ trong một ngày, máy M2 một ngày chỉ làm việc không quá 4 giờ. Tổng số tiền lãi là lớn nhất có thể đạt được là? + Nhà xe khoán cho hai tài xế ta-xi Nam và Tiến mỗi người lần lượt nhận 32 lít và 72 lít xăng. Hỏi tổng số ngày ít nhất là bao nhiêu để hai tài xế chạy tiêu thụ hết số xăng của mình được khoán, biết rằng chỉ tiêu cho hai người một ngày tổng cộng chỉ chạy đủ hết 10 lít xăng và mỗi ngày lượng xăng của mỗi người chạy là không thay đổi? [ads] + Một người thợ muốn tạo một đồ vật hình trụ từ một khối gỗ hình hộp chữ nhật, có đáy là hình vuông và chiều cao bằng 1,25 m. Để tạo ra đồ vật đó người thợ vẽ hai đường tròn (C) và (C’) nội tiếp hai hình vuông của hai mặt đáy của khối gỗ hình hộp chữ nhật rồi dọc đi phần gỗ thừa theo các đường sinh của đồ vật hình trụ. Biết rằng, trong tam giác cong tạo bởi đường tròn (C) và hình vuông ngoại tiếp của (C) có một hình chữ nhật kích thước 0,3cm x 0,6cm (như hình vẽ) và mỗi mét khối gỗ thành phẩm có giá 20 triệu đồng. Hỏi người thợ cần số tiền gần nhất với số tiền của phương án nào dưới đây để tạo được 10 đồ vật như vậy.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi lớp 12 môn Toán năm 2022 2023 cụm Tân Yên Bắc Giang
Nội dung Đề học sinh giỏi lớp 12 môn Toán năm 2022 2023 cụm Tân Yên Bắc Giang Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp cơ sở môn Toán lớp 12 năm học 2022 – 2023 cụm Tân Yên, tỉnh Bắc Giang; đề thi mã đề 113, hình thức 70% trắc nghiệm (40 câu – 14 điểm) kết hợp 30% tự luận (03 câu – 06 điểm), thời gian làm bài: 120 phút (không kể thời gian giao đề). Trích dẫn Đề học sinh giỏi Toán lớp 12 năm 2022 – 2023 cụm Tân Yên – Bắc Giang : + Hai quả bóng hình cầu có kích thước khác nhau được đặt ở hai góc của một căn nhà hình hộp chữ nhật. Mỗi quả bóng tiếp xúc với hai bức tường và nền của căn nhà đó. Trên bề mặt của mỗi quả bóng, tồn tại một điểm có khoảng cách đến hai bức tường quả bóng tiếp xúc và đến nền nhà lần lượt là 9 10 13. Tổng độ dài mỗi đường kính của hai quả bóng đó là? + Thả một quả cầu đặc có bán kính 3 cm vào một vật hình nón (có đáy nón không kín) (như hình vẽ bên). Cho biết khoảng cách từ tâm quả cầu đến đỉnh nón là 5 cm. Tính thể tích (theo đơn vị cm3) phần không gian kín giới hạn bởi bề mặt quả cầu và bề mặt trong của vật hình nón. + Cho hình chóp đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng 2a và O là tâm của đáy. Gọi M, N, P, Q lần lượt là các điểm đối xứng với O qua trọng tâm của các tam giác SAB, SBC, SCD, SDA và S’ là điểm đối xứng với S qua O. Thể tích của khối chóp S’.MNPQ bằng?
Đề học sinh giỏi tỉnh Toán THPT GDTX năm 2022 2023 sở GD ĐT Đắk Lắk
Nội dung Đề học sinh giỏi tỉnh Toán THPT GDTX năm 2022 2023 sở GD ĐT Đắk Lắk Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT & GDTX năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đắk Lắk; kỳ thi được diễn ra vào thứ Tư ngày 15 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi tỉnh Toán THPT & GDTX năm 2022 – 2023 sở GD&ĐT Đắk Lắk : + Cho hàm số y = f(x) = x3 − 3×2 + mx + 1 có đồ thị (Cm) với m là tham số. 1) Tìm tất cả các giá trị thực của m để đồ thị (Cm) có hai điểm cực trị. 2) Khi (Cm) có hai điểm cực trị A và B, tìm m để khoảng cách từ điểm là I đến đường thẳng AB lớn nhất. + Cho đa giác đều 20 đỉnh nội tiếp trong đường tròn (O). Gọi S là tập hợp các đường thẳng đi qua 2 đỉnh bất kỳ của đa giác. Chọn ngẫu nhiên hai đường thẳng từ tập S. Tìm xác suất để chọn được hai đường thẳng có giao điểm nằm trong đường tròn (O). + Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA = AB = a, SB = SD. Lấy M là điểm tùy ý trên đoạn thẳng OA (M khác O và A). Mặt phẳng (a) qua M, song song với SA và BD, cắt AB, SB, SD, AD lần lượt tại E, F, G, H. 1) Tứ giác EFGH là hình gì? Vì sao? 2) Xác định vị trí của M để diện tích tứ giác EFGH đạt giá trị lớn nhất.
Đề học sinh giỏi Toán THPT cấp tỉnh năm 2022 – 2023 sở GD ĐT Ninh Thuận
Nội dung Đề học sinh giỏi Toán THPT cấp tỉnh năm 2022 – 2023 sở GD ĐT Ninh Thuận Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán THPT cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Ninh Thuận; đề thi gồm 05 câu tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào sáng thứ Bảy ngày 11 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi Toán THPT cấp tỉnh năm 2022 – 2023 sở GD&ĐT Ninh Thuận : + Gieo 5 con súc sắc cân đối, đồng chất. Kí hiệu xi (1 ≤ xi ≤ 6) là số chấm trên mặt xuất hiện của con súc sắc thứ i (i = 1, 2, 3, 4, 5). Tính xác suất để một trong các số x1, x2, x3, x4, x5 bằng tổng các số còn lại. + Cho tam giác ABC nhọn, không cân. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là một điểm tùy ý trên cạnh BC (khác B, C, D). Kẻ MK là đường kính của đường tròn ngoại tiếp tam giác BKF và NK là đường kính của đường tròn ngoại tiếp tam giác CKE. Gọi L là giao điểm thứ hai của đường tròn ngoại tiếp tam giác BKF và đường tròn ngoại tiếp tam giác CKE. 1) Chứng minh rằng năm điểm A, F, H, L, E cùng nằm trên một đường tròn. 2) Chứng minh rằng bốn điểm M, H, L, N thẳng hàng. + Tìm tất cả các số có ba chữ số sao cho mỗi số gấp 22 lần tổng các chữ số đó.
Đề học sinh giỏi tỉnh lớp 12 môn Toán năm 2022 2023 sở GD ĐT Bà Rịa Vũng Tàu
Nội dung Đề học sinh giỏi tỉnh lớp 12 môn Toán năm 2022 2023 sở GD ĐT Bà Rịa Vũng Tàu Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào ngày 13 tháng 12 năm 2022; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được biên soạn bởi Nhóm Toán VDC & HSG THPT. Trích dẫn Đề học sinh giỏi tỉnh Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Bà Rịa – Vũng Tàu : + Cho hàm số 3 2 yx m x m x m 2 1 31 22 có đồ thị là (Cm). Tìm tất cả các giá trị tham số m để (Cm) cắt trục hoành tại 3 điểm phân biệt A(2;0), B và C sao cho trong hai điểm B, C có một điểm nằm trong và một điểm nằm ngoài đường tròn 2 2 Cx y 1. + Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B, tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với đáy. Gọi M N lần lượt là trung điểm của SA và BC. Biết AB a và MN tạo với mặt đáy một góc 60°. Tính thể tích khối chóp S ABC theo a. + Cho hàm số f x xác định, liên tục trên R và thoả mãn fx x x cot sin 2 cos 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số gx f xf x trên đoạn [−1;1].