Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 9 năm 2023 - 2024 sở GDĐT Hà Tĩnh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng học sinh môn Toán 9 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2023 – 2024 sở GD&ĐT Hà Tĩnh : + Cho đường thẳng d có phương trình 2 y 2m 1 x 3m 2 với m là tham số. Tìm tất cả các giá trị của tham số m để đường thẳng đã cho song song với đường thẳng ∆ có phương trình y = x – 5. + Một ca nô chạy xuôi theo dòng nước từ bến A đến bến B, cùng lúc đó có một chiếc bè cũng trôi theo dòng nước từ A đến B, khoảng cách giữa hai bến là 30km. Khi ca nô đến bến B và quay trở lại bến A (ca nô không dừng nghỉ) thì gặp chiếc bè tại vị trí C cách bến A 10km. Hỏi vận tốc của ca nô khi nước đứng yên bằng bao nhiêu biết vận tốc dòng nước là 5km/h? + Cho hình thang vuông ABCD vuông tại A và D, CD là đáy lớn. Hai đường chéo AC và BD vuông góc với nhau tại O, biết AB cm 9 AD cm 12. Tính độ dài AO và CD. + Cho nửa đường tròn đường kính AB C là điểm thuộc nửa đường tròn (C khác A và B, sđ AC < sđ CB). Đường phân giác trong của góc ACB cắt AB tại D, đường thẳng vuông góc với AB tại D cắt đường thẳng AC tại M và cắt đường thẳng BC tại N. a. Chứng minh tứ giác BDCM là tứ giác nội tiếp. b. Gọi K là giao điểm của AN với nửa đường tròn, E là giao điểm của CK và tiếp tuyển của nửa đường tròn tại A. Chứng minh ND AD và tứ giác ADNE là hình vuông.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 9 tháng 3 năm 2024 phòng GDĐT Gia Lâm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 tháng 3 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Gia Lâm, thành phố Hà Nội. Trích dẫn Đề khảo sát Toán 9 tháng 3 năm 2024 phòng GD&ĐT Gia Lâm – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Theo kế hoạch, hai tổ sản xuất 800 sản phẩm trong một thời gian nhất định. Khi thực hiện, tổ I do sự cố về máy nên đã bị giảm 15% kế hoạch, còn tổ II nhờ áp dụng kĩ thuật mới nên đã vượt mức 25% kế hoạch. Vì vậy, trong thời gian quy định cả hai tổ làm được 880 sản phẩm. Tính số sản phẩm của mỗi tổ phải làm theo kế hoạch. + Trong mặt phẳng toạ độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = -2mx + m2 + 2. a) Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt với mọi giá trị của m. b) Với m = -1, tìm toạ độ giao điểm A, B của (d) và (P). Xác định vị trí của C trên cung AB của parabol sao cho diện tích tam giác ABC lớn nhất. + Cho tam giác ABC vuông tại A. Vẽ đường tròn (O) đường kính AB cắt BC tại D. Từ A kẻ AH vuông góc với OC tại H. 1) Chứng minh tứ giác AHDC nội tiếp. 2) Gọi I là trung điểm của BD, tia IO cắt tia CA tại E. Chứng minh IB.IC = IO.IE. 3) Gọi K, M lần lượt là giao điểm của AH với BD và đường tròn (O). Chứng minh HM là phân giác của BHD và KI.KC = KB.KD. 4) BE cắt đường tròn (O) tại N. Chứng minh N, H, D thẳng hàng.
Đề khảo sát lần 1 Toán 9 năm 2023 - 2024 phòng GDĐT Thanh Trì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng lần 1 môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Thanh Trì, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 15 tháng 03 năm 2024.
Đề kiểm tra Toán 9 (chuyên) đợt 2 năm 2023 - 2024 trường chuyên KHTN - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra kiến thức môn Toán 9 (Toán chuyên) đợt 2 năm học 2023 – 2024 trường THPT chuyên KHTN, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 10 tháng 03 năm 2024. Trích dẫn Đề kiểm tra Toán 9 (chuyên) đợt 2 năm 2023 – 2024 trường chuyên KHTN – Hà Nội : + Tìm các số tự nhiên n sao cho 3n + n2 + 3 là bình phương của một số tự nhiên. + Cho tam giác ABC có BC là cạnh nhỏ nhất. Trên cạnh AC, AB lấy các điểm E, F sao cho EBC = FCB = BAC. Tiếp tuyến tại E và F của đường tròn (J) ngoại tiếp tam giác AEF giao nhau tại Q. BE giao CF tại K. a) Chứng minh rằng E, F, Q, K cùng thuộc một đường tròn. b) Chứng minh rằng JB = JC. c) QK giao AB, AC lần lượt tại T, S. Chứng minh rằng QT = KS. + Cho n là số nguyên dương. Ban đầu, trên một bảng trắng có viết đúng (n + 1)2 số nguyên dương phân biệt là các ước của 10n. Mỗi bước ta chọn 2 số a, b phân biệt bất kỳ trên bảng, sau đó xóa 2 số này và viết thêm 2 số (bằng nhau) có giá trị là ước chung lớn nhất của a và b. Tiếp tục thực hiện như vậy cho đến khi tất cả các số trên bảng bằng nhau. Tìm giá trị nhỏ nhất của các bước thực hiện có thể có.
Đề kiểm tra Toán 9 (chung) đợt 2 năm 2023 - 2024 trường chuyên KHTN - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra kiến thức môn Toán 9 (Toán chung) đợt 2 năm học 2023 – 2024 trường THPT chuyên KHTN, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 09 tháng 03 năm 2024. Trích dẫn Đề kiểm tra Toán 9 (chung) đợt 2 năm 2023 – 2024 trường chuyên KHTN – Hà Nội : + Chứng minh rằng không tồn tại các số nguyên x, y thỏa mãn: 7×2 – 30xy + 7y2 = 4(x + y) + 932024. + Với các số thực dương a và b thỏa mãn a + b = 2, tìm giá trị lớn nhất của biểu thức P. + Cho tam giác ABC nội tiếp (O), ngoại tiếp (I). (I) tiếp xúc với AC, AB lần lượt tại B, F. P là điểm bất kì nằm trên (I) và không nằm trong tam giác AEF. (J), (K) lần lượt là đường tròn ngoại tiếp tam giác BPF, CPE. (J) giao (K) tại M khác P. a) Chứng minh rằng EPF = 90° – 1/2.BAC. b) Chứng minh rằng B, C, I, M cùng thuộc một đường tròn. c) Gọi L là điểm chính giữa cung BC không chứa A của (O). Chứng minh rằng L, I, J, K cùng thuộc một đường tròn.