Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giữa học kỳ 1 Toán 8 năm 2023 - 2024 trường THCS Lê Lợi - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra giữa học kỳ 1 môn Toán 8 năm học 2023 – 2024 trường THCS Lê Lợi, quận Tân Phú, thành phố Hồ Chí Minh; đề thi có đáp án trắc nghiệm và hướng dẫn chấm điểm tự luận. Trích dẫn Đề giữa học kỳ 1 Toán 8 năm 2023 – 2024 trường THCS Lê Lợi – TP HCM : + Một khối bê tông được làm có dạng hình chóp tứ giác đều trong đó có cạnh đáy hình chóp là , chiều cao của tam giác mặt bên kẻ từ đỉnh của hình chóp là 3m. Người ta sơn bốn mặt xung quanh của khối bê tông. Cứ mỗi mét vuông sơn cần trả 30 000 đồng (tiền sơn và tiền công). Cần phải trả bao nhiêu tiền khi sơn bốn mặt xung quanh? + Trong hình vẽ bên, một xe thang cứu hỏa có chiều dài thang AE là 60m có thể vươn tới vị trí E của một tòa nhà. Biết xe đậu cách tòa nhà một khoảng CD = 7,5m và chiều cao từ mặt đất đến cần điều khiển của xe là đoạn AC = 2,5m. Tính chiều cao mà thang có thể vươn tới (làm tròn đến chữ số thập phân thứ nhất). + Một bể kính hình hộp chữ nhật chứa nước có hai cạnh đáy là 50 cm và 30 cm, khoảng cách từ mực nước tới miệng bể là 15 cm. Người ta dự định đặt vào bể một khối đá hình chóp tứ giác đều cạnh đáy là 30 cm, chiều cao 15 cm. a. Tính thể tích khối đá hình chóp tứ giác đều. b. Sau khi đặt khối đá hình chóp tứ giác đều vào thì khoảng cách mực nước tới miệng bể là bao nhiêu? Biết rằng bề dày của đáy bể và thành bể không đáng kể, sau khi đặt khối đá vào, nước ngập khối đá và không tràn ra ngoài.

Nguồn: toanmath.com

Đọc Sách

Đề thi giữa học kì 1 Toán 8 năm 2020 - 2021 trường THCS Đông Sơn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi giữa học kì 1 Toán 8 năm 2020 – 2021 trường THCS Đông Sơn – Hà Nội; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa học kì 1 Toán 8 năm 2020 – 2021 trường THCS Đông Sơn – Hà Nội : + Cho tam giác ABC cân tại A. Gọi M N lần lượt là trung điểm của AB và AC. a) Tính MN biết BC = 7 cm. b) Chứng minh rằng tứ giác MNCB là hình thang cân. c) Kẻ MI vuông góc với BN tại I và CK vuông góc với BN tại K K BN Chứng minh rằng CK MI d) Kẻ BD vuông góc với MC tại D. Chứng minh rằng DK // BC. + Tìm giá trị lớn nhất của biểu thức: 2 A xx. + Phân tích đa thức thành nhân tử.
Đề thi giữa học kì 1 Toán 8 năm 2020 - 2021 trường THCS Lê Quý Đôn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi giữa học kì 1 Toán 8 năm 2020 – 2021 trường THCS Lê Quý Đôn – Hà Nội; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa học kì 1 Toán 8 năm 2020 – 2021 trường THCS Lê Quý Đôn – Hà Nội : + Cho hình bình hành ABCD có AB > BC. Đường phân giác của góc D cắt AB tại M, đường phân giác của góc B cắt CD tại N. a/ Chứng minh AM = CN b/ Chứng minh tứ giác DMBN là hình bình hành. + Tìm đa thức thương và đa thức dư trong phép chia đa thức A x cho B x. + Để 2 4 12 y y trở thành một hằng đẳng thức. Giá trị trong ô vuông là?
Đề thi giữa học kì 1 Toán 8 năm 2020 - 2021 trường THCS Mỹ Đình 1 - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi giữa học kì 1 Toán 8 năm 2020 – 2021 trường THCS Mỹ Đình 1 – Hà Nội; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa học kì 1 Toán 8 năm 2020 – 2021 trường THCS Mỹ Đình 1 – Hà Nội : + Một tứ giác có nhiều nhất là: A. 4 góc vuông. B. 3 góc vuông. C. 2 góc vuông. D. 1 góc vuông. + Một hình thang cân là hình thang có: A. Hai đáy bằng nhau. B. Hai cạnh bên bằng nhau. C. Hai đường chéo bằng nhau. D. Hai cạnh bên song song. + Một hình thang có đáy lớn dài 6 cm,đáy nhỏ dài 4 cm. Độ dài đường trung bình của hình thang đó là: A. 10cm. B. 5 cm. C. 10 cm. D. 5 cm.
Đề thi giữa kỳ 1 Toán 8 năm 2020 - 2021 trường THCS Tam Hồng - Vĩnh Phúc
Đề thi giữa kỳ 1 Toán 8 năm 2020 – 2021 trường THCS Tam Hồng – Vĩnh Phúc gồm 04 câu trắc nghiệm và 05 câu tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án trắc nghiệm + lời giải chi tiết tự luận. Trích dẫn đề thi giữa kỳ 1 Toán 8 năm 2020 – 2021 trường THCS Tam Hồng – Vĩnh Phúc : + Cho ∆𝐴𝐵𝐶 vuông tại C (AC < BC), I là trung điểm của AB. Kẻ IE BC tại E, IF AC tại F. a) Chứng minh tứ giác CEIF là hình chữ nhật. b) Gọi H là điểm đối xứng của I qua F. Chứng minh tứ giác CHFE là hình bình hành. c) CI cắt BF tại G, O là trung điểm của FI. Chứng minh 3 điểm A, O, G thẳng hàng. + Một hình thang có độ dài hai đáy là 6cm và 10cm. Độ dài đường trung bình của hình thang đó là? + Tìm giá trị nhỏ nhất của biểu thức P = (x – 1)(x + 2)(x + 3)(x + 6).