Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lý thuyết và ví dụ về hình học không gian cổ điển - Dương Phước Sang

Tài liệu gồm 27 trang tuyển tập lý thuyết và ví dụ về hình học không gian cổ điển, bao gồm: khái niệm, định nghĩa, tính chất, công thức, dạng toán, phương pháp giải toán và các ví dụ minh họa … Tài liệu được biên soạn bởi thầy Dương Phước Sang. Các chủ đề có trong tài liệu : I. Một số vấn đề cơ bản về quan hệ song song 1. Việc xác định giao tuyến của hai mặt phẳng. 2. Việc xác định giao điểm của đường thẳng và mặt phẳng. 3. Một số định lý về nhận dạng quan hệ song song. II. Một số vấn đề cơ bản về quan hệ vuông góc 1. Phương pháp chứng minh đường thẳng vuông góc với mặt phẳng. 2. Phương pháp chứng minh hai đường thẳng vuông góc. 3. Phương pháp chứng minh hai mặt phẳng vuông góc. III. Phương pháp xác định các loại góc trong không gian 1. Góc giữa hai đường thẳng. 2. Góc giữa đường thẳng và mặt phẳng (cắt nhau nhưng không vuông góc). 3. Góc giữa hai mặt phẳng (cắt nhau). IV. Phương pháp xác định khoảng cách 1. Khoảng cách từ một điểm đến một mặt phẳng. 2. Khoảng cách giữa 2 đối tượng song song nhau. 3. Khoảng cách giữa 2 đường thẳng a và b chéo nhau. [ads] V. Một số vấn đề về khối đa diện lồi, khối đa diện đều 1. Tính chất của một hình đa diện, khối đa diện. 2. Bảng tổng hợp tính chất của các đa diện đều. VI. Một số công thức tính toán hình học 1. Công thức tính toán hình học liên quan đến tam giác. 2. Công thức tính toán hình học liên quan đến tứ giác. 3. Công thức thể tính thể tích khối chóp và khối lăng trụ. 4. Công thức tính toán với các khối nón – trụ – cầu. 5. Phương pháp dựng tâm I của mặt cầu ngoại tiếp hình chóp. VII. Một số khối đa diện thường gặp trong các đề thi 1. Hình chóp tam giác đều. 2. Hình tam diện vuông O.ABC (vuông tại O). 3. Hình chóp S.ABC có đường cao SA, AB vuông góc với BC. 4. Hình chóp S.ABC có cạnh bên SA “thẳng đứng”, mặt đáy là tam giác “thường”. 5. Hình chóp S.ABC có 1 mặt bên b “cân tại S” và “dựng đứng”. 6. Hình chóp tứ giác đều. 7. Hình chóp S.ABCD có cạnh bên SA “thẳng đứng”, mặt đáy là “hình chữ nhật”. 8. Hình chóp S.ABCD có 1 mặt bên “cân tại S” và “dựng đứng”. 9. Hình hộp chữ nhật. Công thức tính nhanh một số khối tứ diện đặc biệt. Một số công thức biệt liên quan khối tròn xoay. VIII. Ví dụ giải toán điển hình 

Nguồn: toanmath.com

Đọc Sách

05 đề ôn tập cuối chương khối đa diện và thể tích của chúng có đáp án và lời giải
Tài liệu gồm 74 trang, được biên soạn bởi tác giả Phùng Hoàng Em, tuyển tập 05 đề ôn tập cuối chương khối đa diện và thể tích của chúng có đáp án và lời giải chi tiết. Trích dẫn tài liệu 05 đề ôn tập cuối chương khối đa diện và thể tích của chúng: Câu 1. Thể tích của một khối chóp có diện tích đáy bằng 4 dm2 và chiều cao bằng 6 dm là? Câu 2. Thể tích của một khối lăng trụ có diện tích đáy bằng B và chiều cao bằng h là? Câu 3. Tính thể tích V của khối lập phương có cạnh bằng 2cm. Câu 4. Tính thể tích khối lăng trụ tam giác đều ABC.A0B0C0 biết tất cả các cạnh của lăng trụ đều bằng a. Câu 5. Tính thể tích V của khối lăng trụ ABC.A0B0C0 biết thể tích của khối chóp C0.ABC bằng a3. Câu 6. Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 2a; AD = 3a. Cạnh bên SA vuông góc với đáy (ABCD) và SA = a. Tính thể tích V của khối chóp S.ABCD. Câu 7. Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OA = a, OB = b, OC = c. Tính thể tích khối tứ diện OABC. Câu 8. Gọi V1 là thể tích của khối lập phương ABCD.A0B0C0D0, V2 là thể tích khối tứ diện A0ABD. Hệ thức sào sau đây là đúng? Câu 9. Thể tích khối tứ diện đều cạnh a√3 bằng? Câu 10. Tổng diện tích các mặt của một hình lập phương bằng 150. Thể tích của khối lập phương đó là?
Toàn cảnh khối đa diện và thể tích trong đề THPT môn Toán của Bộ GDĐT (2016 - 2021)
Tài liệu gồm 109 trang, được tổng hợp bởi thầy giáo Nguyễn Hoàng Việt, tuyển tập 113 bài toán chuyên đề khối đa diện và thể tích khối đa diện trong các đề thi tham khảo, đề thi minh họa và đề thi chính thức THPT môn Toán của Bộ Giáo dục và Đào tạo từ năm 2016 đến năm 2021, có đáp án và lời giải chi tiết; giúp học sinh lớp 12 rèn luyện khi học chương trình Toán 12 phần Hình học chương 1 và ôn thi tốt nghiệp Trung học Phổ thông môn Toán. Tài liệu được phân chia ra 03 phần cho học sinh dễ theo dõi: phần đề bài (trang 01) để học sinh tự làm, phần bảng đáp án (trang 41) để học sinh dò kết quả và phần đáp án – lời giải chi tiết (trang 42). Trích dẫn tài liệu toàn cảnh khối đa diện và thể tích trong đề thi THPT môn Toán của Bộ GD&ĐT (2016 – 2021): + Câu 25 – MĐ 102 – BGD&ĐT – Năm 2016 – 2017: Mặt phẳng AB C chia khối lăng trụ ABC A B C thành các khối đa diện nào? Ⓐ. Một khối chóp tam giác và một khối chóp ngũ giác. Ⓑ. Một khối chóp tam giác và một khối chóp tứ giác. Ⓒ. Hai khối chóp tam giác. Ⓓ. Hai khối chóp tứ giác. + Câu 45 – MĐ 102 – BGD&ĐT – Đợt 2 – Năm 2019 – 2020: Cho hình chóp đều S ABCD có cạnh đáy bằng 4a, cạnh bên bằng 2 3a và O là tâm của đáy. Gọi M N P và Q lần lượt là hình chiếu vuông góc của O trên các mặt phẳng SAB SBC SCD và SDA. Thể tích của khối chóp O MNPQ bằng? Gọi E F K H lần lượt là trung điểm của AB BC CD DA và M N P Q lần lượt là hình chiếu vuông góc của O trên SE SF SK SH M N P Q lần lượt là hình chiếu vuông góc của O trên các mặt phẳng SAB SBC SCD SDA. Ta có 2 2 2 2 SO SD OD a a a OE OF OK OH 2 3 2 2 2 các tam giác SOE SOF SOK SOH vuông cân tại O và bằng nhau nên M N P và Q lần lượt là trung điểm của của SE SF SK SH MNPQ là hình vuông cạnh a 2. Mặt khác ta có OM ON OP OQ a 2 O MNPQ là hình chóp đều có tất cả các cạnh bằng a 2 nên có đường cao bằng 2 2 1 a a a. Khi đó thể tích của khối chóp O MNPQ bằng 3 1 2 2 3 3. + Câu 47 – MĐ 101 – BGD&ĐT – Năm 2017 – 2018: Trong không gian Oxyz, cho mặt cầu S có tâm I và đi qua điểm A. Xét các điểm B C D thuộc S sao cho AB AC AD đôi một vuông góc với nhau. Thể tích khối tứ diện ABCD có giá trị lớn nhất bằng? Lời giải: Chọn D. Ta có: Dựng hình hộp chữ nhật ABEC DFGH. I là tâm mặt cầu ngoại tiếp A BCD. I là trung điểm của AG. Dấu đẳng thức xảy ra x y z 6. Vậy max 36 VABCD.
Chuyên đề thể tích khối đa diện - Lê Minh Tâm
Tài liệu gồm 127 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, tổng hợp kiến thức cần nhớ, các dạng toán kèm phương pháp giải và bài tập chuyên đề thể tích khối đa diện, giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 1: Khối đa diện và thể tích của chúng và ôn thi tốt nghiệp THPT môn Toán. Mục lục tài liệu chuyên đề thể tích khối đa diện – Lê Minh Tâm: I. KIẾN THỨC CẦN NHỚ II. CÁC DẠNG BÀI TẬP + Dạng toán 1. CHÓP CÓ CẠNH BÊN VUÔNG GÓC VỚI ĐÁY (Trang 6). + Dạng toán 2. CHÓP CÓ MẶT BÊN VUÔNG GÓC VỚI ĐÁY (Trang 8). + Dạng toán 3. CHÓP ĐỀU (Trang 11). + Dạng toán 4. TỶ SỐ THỂ TÍCH (Trang 14). + Dạng toán 5. TỔNG HIỆU THỂ TÍCH (Trang 18). + Dạng toán 6. THỂ TÍCH LĂNG TRỤ ĐỨNG (Trang 24). + Dạng toán 7. THỂ TÍCH LĂNG TRỤ XIÊN (Trang 29). + Dạng toán 8. THỂ TÍCH KHỐI LẬP PHƯƠNG – KHỐI HỘP (Trang 33). + Dạng toán 9. KHỐI ĐA DIỆN ĐƯỢC CẮT RA TỪ KHỐI LĂNG TRỤ (Trang 37). + Dạng toán 10. MAX – MIN THỂ TÍCH (Trang 44). III. BÀI TẬP RÈN LUYỆN IV. BẢNG ĐÁP ÁN THAM KHẢO
Bài toán khối đa diện và thể tích trong đề thi THPT môn Toán của Bộ GDĐT (2017 - 2021)
Tài liệu gồm 61 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Giáo Viên Toán Việt Nam, tuyển tập các bài toán khối đa diện và thể tích khối đa diện trong các đề thi minh họa và đề thi chính thức THPT môn Toán của Bộ Giáo dục và Đào tạo giai đoạn từ năm 2017 đến năm 2021; các bài toán có đáp án và lời giải chi tiết. Tài liệu giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 1: Khối đa diện và thể tích khối đa diện và ôn thi tốt nghiệp THPT môn Toán. Trích dẫn tài liệu bài toán khối đa diện và thể tích trong đề thi THPT môn Toán của Bộ GD&ĐT (2017 – 2021): + Mặt phẳng (AB’C’) chia khối lăng trụ ABC.A’B’C’ thành các khối đa diện nào? A. Một khối chóp tam giác và một khối chóp ngũ giác. B. Một khối chóp tam giác và một khối chóp tứ giác. C. Hai khối chóp tam giác. D. Hai khối chóp tứ giác. + Cho hình chóp đều S ABCD có cạnh đáy bằng a, cạnh bên bằng 2a và O là tâm của đáy. Gọi M, N, P, Q lần lượt là các điểm đối xứng với O qua trọng tâm của các tam giác SAB, SBC, SCD, SDA và S’ là điểm đối xứng với S qua O. Thể tích của khối chóp S’.MNPQ bằng? + Cho khối lăng trụ ABC.A’B’C’, khoảng cách từ C đến đường thẳng BB’ bằng 2, khoảng cách từ A đến các đường thẳng BB’ và CC’ lần lượt bằng 1 và 3, hình chiếu vuông góc của A lên mặt phẳng (A’B’C’) là trung điểm M của B’C’ và A’M = 2. Thể tích của khối lăng trụ đã cho bằng?