Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 2 lớp 10 môn Toán năm 2021 2022 trường THPT Hàm Long Bắc Ninh

Nội dung Đề khảo sát lần 2 lớp 10 môn Toán năm 2021 2022 trường THPT Hàm Long Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi khảo sát chất lượng lần 2 môn Toán lớp 10 năm học 2021 – 2022 trường THPT Hàm Long, tỉnh Bắc Ninh; đề thi mã đề 001 gồm 05 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án mã đề 001 – 002 – 003 – 004 – 005 – 006; kỳ thi được diễn ra vào tháng 04 năm 2022. Trích dẫn đề khảo sát lần 2 Toán lớp 10 năm 2021 – 2022 trường THPT Hàm Long – Bắc Ninh : + Cho hàm số 2 y ax bx c có đồ thị (P) như hình bên. Khẳng định nào sau đây là khẳng định Sai? A. Hàm số đồng biến trên khoảng và nghịch biến trên khoảng B. (P) có đỉnh I(3;4) C. Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 1 D. Đồ thị hàm số cắt trục hoành tại hai điểm phân biệt. + Để chào mừng ngày 26/3, đoàn trường THPT Quế Võ 1 phát động cuộc thi hoa điểm tốt với quy định như sau: Với mỗi điểm 10, 9, 8 tương ứng sẽ được x, y, z bông hoa. Tuần thứ nhất, lớp 10A1 được 7 điểm 10 và 5 điểm 8 nên được thưởng 88 bông hoa. Tuần thứ hai, lớp 10A1 được 1 điểm 10, 10 điểm 9 và 15 điểm 8 nên được thưởng 154 bông hoa. Tuần thứ ba, lớp 10A1 được 15 điểm 10, 1 điểm 9 và 2 điểm 8 nên được thưởng 152 bông hoa. Hỏi nếu lớp 10A1 được 5 điểm 10, 10 điểm 9 và 7 điểm 8 thì lớp 10A1 được thưởng bao nhiêu bông hoa? A. 145 bông B. 148 bông C. 150 bông D. 142 bông. + Khi khai quật hoàng thành Thăng Long, người ta tìm được một mảnh đĩa của một chiếc đĩa phẳng hình tròn bị vỡ. Dựa vào tài liệu các nhà khảo cổ đã biết hình vẽ trên phần còn lại của chiếc đĩa. Họ muốn làm lại một chiếc đĩa mới phỏng theo chiếc đĩa này. Vậy bán kính của chiếc đĩa bằng bao nhiêu? Biết rằng họ lấy ba điểm A, B, C trên cung tròn (mép đĩa) và đo được kết quả như sau AB cm = 4,3 , BC cm = 3,7 , AC cm = 7,5 (Hình vẽ) A. 5,3cm B. 5,7cm C. 6,5cm D. 11,8cm. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra định kỳ học kì 1 (HK1) lớp 10 môn Toán trường THPT Võ Thành Trinh An Giang
Nội dung Đề kiểm tra định kỳ học kì 1 (HK1) lớp 10 môn Toán trường THPT Võ Thành Trinh An Giang Bản PDF Đề kiểm tra định kỳ học kỳ 1 môn Toán lớp 10 trường THPT Võ Thành Trinh – An Giang gồm 4 mã đề, mỗi đề gồm 2 trang với 16 câu trắc nghiệm và 2 câu tự luận, thời gian làm bài 45 phút, tất cả các mã đề đều có đáp án . Trích dẫn đề thi : + Cho hai tập hợp A = {1; 2; 3; 4; 5} và B = {2; 4; 6; 8}. Xác định tập hợp A ∪ B. A. A ∪ B = {1; 3; 5} B. A ∪ B = {1; 2; 3; 4; 5; 6; 7; 8} C. A ∪ B = {1; 2; 3; 4; 5; 6; 8} D. A ∪ B = {2; 4} [ads] + Phủ định của mệnh đề “∀x ∈ R : x^2 + x + 2 > 0” là mệnh đề nào sau đây? A. ∃x ∈ R : x^2 + x + 2 < 0 B. ∀x ∈ R : x^2 + x + 2 < 0 C. ∃x ∈ R : x^2 + x + 2 ≤ 0 D. ∀x ∈ R : x^2 + x + 2 ≤ 0 + Hàm số nào trong các hàm số sau đây có đồ thị như hình bên? A. y = x − 3 B. y = 2x − 3 C. y = 4x − 6 D. y = −4x + 6
Đề kiểm tra định kỳ lần 2 lớp 10 môn Toán năm 2019 2020 trường THPT chuyên Bắc Ninh
Nội dung Đề kiểm tra định kỳ lần 2 lớp 10 môn Toán năm 2019 2020 trường THPT chuyên Bắc Ninh Bản PDF Đề kiểm tra định kỳ lần 2 Toán lớp 10 năm học 2019 – 2020 trường THPT chuyên Bắc Ninh gồm có hai đề riêng biệt: đề dành cho các lớp 10 chuyên Vật lý – chuyên Hóa học – chuyên Tin học và đề dành cho các lớp 10 chuyên Ngữ Văn – chuyên Sinh học – chuyên Tiếng Anh, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Trích dẫn đề kiểm tra định kỳ lần 2 Toán lớp 10 năm 2019 – 2020 trường THPT chuyên Bắc Ninh : + Cho hàm số y = -x^2 + (2m – 3)x + 1 – m^2 (trong đó m là tham số). a) Lập bảng biến thiên và vẽ đồ thị hàm số với m = 2. b) Tìm tất cả giá trị của m đề đồ thị hàm số cắt trục hoành tại hai điểm phân biệt khác O và nằm khác phía nhau đối với điểm O. c) Tìm điều kiện của tham số m để hàm số đã cho nghịch biến trên khoảng (0;2019). + Trên mặt phẳng tọa độ Oxy cho bốn điểm A(0;1), B(-1;3), C(5;6), D(4;3). a ) Chứng tỏ rằng bốn điểm đã cho tạo thành một hình thang có đáy là AD và BC. b) Biết I là điểm thỏa mãn 2.IA + 2.IB + 3.IC + 3.ID = 0. Chứng minh I nằm trên đường trung bình của hình thang tạo bởi bốn điểm đã cho. + Cho ba số thực không âm a, b, c thỏa mãn a + b + c = 3 và không có số nào lớn hơn 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A = √(1 + a) + √(1 + b) + √(1 + c).
Đề KSCL giữa HK1 Toán 10 năm 2018 - 2019 trường THPT Bùi Thị Xuân - TT. Huế
Đề KSCL giữa HK1 Toán 10 năm 2018 – 2019 trường THPT Bùi Thị Xuân – TT. Huế mã đề 001 gồm 2 trang với 24 câu hỏi trắc nghiệm khách quan (chiếm 8 điểm) và 1 bài toán tự luận (2 điểm), yêu câu học sinh hoàn thành bài làm trong thời gian 45 phút, đề KSCL có đáp án và lời giải chi tiết. Trích dẫn đề KSCL giữa HK1 Toán 10 năm 2018 – 2019 trường THPT Bùi Thị Xuân – TT. Huế : + Biết đồ thị hàm số y = ax + b là đường thẳng đi qua K(5;-4) và vuông góc với đường thẳng y = x + 4 .Giá trị của biểu thức A = a + 2b bằng? + Cho hàm số y = x − 1 có đồ thị là đường thẳng ∆. Đường thẳng ∆ tạo với hai trục tọa độ một tam giác có diện tích bằng? [ads] + Cho hàm số y = x^2 – 2x – 1. Mệnh đề nào sau đây sai? A. Hàm số giảm trên khoảng (−∞;1). B. Đồ thị hàm số có trục đối xứng x = −2. C. Đồ thị hàm số nhận I(1;-2) làm đỉnh. D. Hàm số tăng trên khoảng(1;+∞).
Đề kiểm tra lớp 10 môn Toán năm học 2019 2020 trường THPT Đống Đa Hà Nội
Nội dung Đề kiểm tra lớp 10 môn Toán năm học 2019 2020 trường THPT Đống Đa Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô cùng các em học sinh đề kiểm tra giữa học kì 1 môn Toán lớp 10 năm học 2019 – 2020 trường THPT Đống Đa – Hà Nội, đề gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 60 phút. Trích dẫn đề kiểm tra Toán lớp 10 năm học 2019 – 2020 trường THPT Đống Đa – Hà Nội : + Xét tính chẵn lẻ của hàm số y = 2x^3 – 3x. + Tìm m sao cho hàm số sau là hàm số chẵn: y = x^4 – 3x^2 + (m – 2)x + 4m – 1. + Cho tam giác ABC với trọng tâm G. a) Chứng minh rằng với mọi điểm D bất kì ta luôn có AC + DA + BD = AD – CD + BA. b) Tìm tập hợp các điểm M thỏa mãn |AB + MA| = |AB – AC|. c) Gọi I là điểm đối xứng với A qua B, đường thẳng IG cắt AC tại E. Tính tỉ số EA/EC.